Properties

Label 225.3.c.d
Level $225$
Weight $3$
Character orbit 225.c
Analytic conductor $6.131$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [225,3,Mod(26,225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("225.26");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 225.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.13080594811\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} + 9x^{2} - 8x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} - 3 q^{4} - \beta_1 q^{7} - \beta_{2} q^{8} - \beta_{3} q^{11} - \beta_1 q^{13} - 7 \beta_{3} q^{14} - 19 q^{16} - 4 \beta_{2} q^{17} - 20 q^{19} + \beta_1 q^{22} - 2 \beta_{2} q^{23}+ \cdots - 77 \beta_{2} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{4} - 76 q^{16} - 80 q^{19} + 104 q^{31} - 112 q^{34} - 56 q^{46} + 308 q^{49} - 88 q^{61} + 116 q^{64} + 240 q^{76} - 56 q^{79} + 504 q^{91} + 224 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} + 9x^{2} - 8x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 3\nu^{2} - 3\nu + 12 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -4\nu^{3} + 6\nu^{2} - 32\nu + 15 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 6\nu^{3} - 9\nu^{2} + 51\nu - 24 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 2\beta_{3} + 3\beta_{2} + 3 ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2\beta_{3} + 3\beta_{2} + 2\beta _1 - 21 ) / 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -13\beta_{3} - 21\beta_{2} + 3\beta _1 - 33 ) / 6 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
26.1
0.500000 0.0913379i
0.500000 + 2.73709i
0.500000 + 0.0913379i
0.500000 2.73709i
2.64575i 0 −3.00000 0 0 −11.2250 2.64575i 0 0
26.2 2.64575i 0 −3.00000 0 0 11.2250 2.64575i 0 0
26.3 2.64575i 0 −3.00000 0 0 −11.2250 2.64575i 0 0
26.4 2.64575i 0 −3.00000 0 0 11.2250 2.64575i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 225.3.c.d 4
3.b odd 2 1 inner 225.3.c.d 4
4.b odd 2 1 3600.3.l.s 4
5.b even 2 1 inner 225.3.c.d 4
5.c odd 4 2 45.3.d.a 4
12.b even 2 1 3600.3.l.s 4
15.d odd 2 1 inner 225.3.c.d 4
15.e even 4 2 45.3.d.a 4
20.d odd 2 1 3600.3.l.s 4
20.e even 4 2 720.3.c.a 4
40.i odd 4 2 2880.3.c.b 4
40.k even 4 2 2880.3.c.g 4
45.k odd 12 4 405.3.h.j 8
45.l even 12 4 405.3.h.j 8
60.h even 2 1 3600.3.l.s 4
60.l odd 4 2 720.3.c.a 4
120.q odd 4 2 2880.3.c.g 4
120.w even 4 2 2880.3.c.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
45.3.d.a 4 5.c odd 4 2
45.3.d.a 4 15.e even 4 2
225.3.c.d 4 1.a even 1 1 trivial
225.3.c.d 4 3.b odd 2 1 inner
225.3.c.d 4 5.b even 2 1 inner
225.3.c.d 4 15.d odd 2 1 inner
405.3.h.j 8 45.k odd 12 4
405.3.h.j 8 45.l even 12 4
720.3.c.a 4 20.e even 4 2
720.3.c.a 4 60.l odd 4 2
2880.3.c.b 4 40.i odd 4 2
2880.3.c.b 4 120.w even 4 2
2880.3.c.g 4 40.k even 4 2
2880.3.c.g 4 120.q odd 4 2
3600.3.l.s 4 4.b odd 2 1
3600.3.l.s 4 12.b even 2 1
3600.3.l.s 4 20.d odd 2 1
3600.3.l.s 4 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(225, [\chi])\):

\( T_{2}^{2} + 7 \) Copy content Toggle raw display
\( T_{7}^{2} - 126 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 7)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} - 126)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 18)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 126)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 112)^{2} \) Copy content Toggle raw display
$19$ \( (T + 20)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} + 28)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 72)^{2} \) Copy content Toggle raw display
$31$ \( (T - 26)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} - 1134)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 3042)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 504)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 448)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 7168)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 2178)^{2} \) Copy content Toggle raw display
$61$ \( (T + 22)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} - 8064)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 2592)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 4536)^{2} \) Copy content Toggle raw display
$79$ \( (T + 14)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} + 5488)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 7938)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 504)^{2} \) Copy content Toggle raw display
show more
show less