L(s) = 1 | + (−2.00 + 3.47i)5-s + (−1.89 − 1.84i)7-s + (0.885 + 1.53i)11-s + (−0.114 − 0.198i)13-s + (3.04 − 5.27i)17-s + (−3.27 − 5.67i)19-s + (0.769 − 1.33i)23-s + (−5.55 − 9.62i)25-s + (0.271 − 0.469i)29-s + 4.55·31-s + (10.2 − 2.86i)35-s + (1.54 + 2.66i)37-s + (4.43 + 7.69i)41-s + (−2.12 + 3.67i)43-s − 0.757·47-s + ⋯ |
L(s) = 1 | + (−0.897 + 1.55i)5-s + (−0.715 − 0.698i)7-s + (0.267 + 0.462i)11-s + (−0.0317 − 0.0549i)13-s + (0.739 − 1.28i)17-s + (−0.752 − 1.30i)19-s + (0.160 − 0.277i)23-s + (−1.11 − 1.92i)25-s + (0.0503 − 0.0872i)29-s + 0.817·31-s + (1.72 − 0.484i)35-s + (0.253 + 0.438i)37-s + (0.693 + 1.20i)41-s + (−0.323 + 0.560i)43-s − 0.110·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0354i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0354i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.173886624\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.173886624\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (1.89 + 1.84i)T \) |
good | 5 | \( 1 + (2.00 - 3.47i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.885 - 1.53i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (0.114 + 0.198i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-3.04 + 5.27i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.27 + 5.67i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.769 + 1.33i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.271 + 0.469i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 4.55T + 31T^{2} \) |
| 37 | \( 1 + (-1.54 - 2.66i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.43 - 7.69i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.12 - 3.67i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 0.757T + 47T^{2} \) |
| 53 | \( 1 + (3.19 - 5.53i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 - 5.17T + 59T^{2} \) |
| 61 | \( 1 - 12.5T + 61T^{2} \) |
| 67 | \( 1 + 6.18T + 67T^{2} \) |
| 71 | \( 1 - 13.9T + 71T^{2} \) |
| 73 | \( 1 + (5.08 - 8.81i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 - 11.5T + 79T^{2} \) |
| 83 | \( 1 + (-8.66 + 15.0i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (5.04 + 8.73i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.91 + 8.50i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.144520690992196915682417034043, −7.960656910820860828972575958614, −7.38886901844042317770446777731, −6.72629448868744916537278443093, −6.34188616838061545163851131999, −4.81988652290861301554137282913, −4.07279140431633995159834112035, −3.09494794740767019956205277902, −2.62489801372902723628624452862, −0.60625718088102149626618487091,
0.794302985389181549296926861773, 2.00587021909282220706459695606, 3.63069689372264375410001919290, 3.91796135469996504475415347449, 5.14037039234412391266273016720, 5.76176291975602524304829360125, 6.55566554329002466176940494952, 7.83318694672567656772135386298, 8.307664858054532662622399289419, 8.851413996036036358783148144834