Properties

Label 2268.2.i.l.865.1
Level $2268$
Weight $2$
Character 2268.865
Analytic conductor $18.110$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2268,2,Mod(865,2268)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2268, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2268.865");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.310217769.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 4x^{6} - 2x^{5} + 15x^{4} - 4x^{3} + 5x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 865.1
Root \(0.346911 - 0.600868i\) of defining polynomial
Character \(\chi\) \(=\) 2268.865
Dual form 2268.2.i.l.2053.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.00677 + 3.47583i) q^{5} +(-1.89234 - 1.84906i) q^{7} +O(q^{10})\) \(q+(-2.00677 + 3.47583i) q^{5} +(-1.89234 - 1.84906i) q^{7} +(0.885571 + 1.53385i) q^{11} +(-0.114429 - 0.198197i) q^{13} +(3.04751 - 5.27844i) q^{17} +(-3.27792 - 5.67752i) q^{19} +(0.769592 - 1.33297i) q^{23} +(-5.55428 - 9.62030i) q^{25} +(0.271142 - 0.469632i) q^{29} +4.55273 q^{31} +(10.2245 - 2.86683i) q^{35} +(1.54073 + 2.66863i) q^{37} +(4.43985 + 7.69005i) q^{41} +(-2.12120 + 3.67403i) q^{43} -0.757595 q^{47} +(0.161936 + 6.99813i) q^{49} +(-3.19645 + 5.53641i) q^{53} -7.10856 q^{55} +5.17648 q^{59} +12.5015 q^{61} +0.918533 q^{65} -6.18803 q^{67} +13.9068 q^{71} +(-5.08824 + 8.81309i) q^{73} +(1.16039 - 4.54006i) q^{77} +11.5829 q^{79} +(8.66871 - 15.0146i) q^{83} +(12.2313 + 21.1853i) q^{85} +(-5.04596 - 8.73985i) q^{89} +(-0.149939 + 0.586643i) q^{91} +26.3121 q^{95} +(4.91267 - 8.50899i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{5} + q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 2 q^{5} + q^{7} + 5 q^{11} - 3 q^{13} + 2 q^{17} - 8 q^{19} + 2 q^{23} - 8 q^{25} - 2 q^{29} + 11 q^{35} + 4 q^{37} - 3 q^{41} - 5 q^{43} - 30 q^{47} - 19 q^{49} - 24 q^{53} + 16 q^{55} - 20 q^{59} + 24 q^{61} + 24 q^{65} + 14 q^{67} - 22 q^{71} - 10 q^{73} - 11 q^{77} + 35 q^{83} + 13 q^{85} - 18 q^{89} - 9 q^{91} + 20 q^{95} - 19 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.00677 + 3.47583i −0.897456 + 1.55444i −0.0667218 + 0.997772i \(0.521254\pi\)
−0.830735 + 0.556669i \(0.812079\pi\)
\(6\) 0 0
\(7\) −1.89234 1.84906i −0.715239 0.698880i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.885571 + 1.53385i 0.267010 + 0.462474i 0.968088 0.250610i \(-0.0806311\pi\)
−0.701079 + 0.713084i \(0.747298\pi\)
\(12\) 0 0
\(13\) −0.114429 0.198197i −0.0317369 0.0549699i 0.849721 0.527233i \(-0.176771\pi\)
−0.881458 + 0.472263i \(0.843437\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.04751 5.27844i 0.739129 1.28021i −0.213759 0.976886i \(-0.568571\pi\)
0.952888 0.303323i \(-0.0980960\pi\)
\(18\) 0 0
\(19\) −3.27792 5.67752i −0.752005 1.30251i −0.946849 0.321677i \(-0.895753\pi\)
0.194844 0.980834i \(-0.437580\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.769592 1.33297i 0.160471 0.277944i −0.774567 0.632492i \(-0.782032\pi\)
0.935038 + 0.354548i \(0.115365\pi\)
\(24\) 0 0
\(25\) −5.55428 9.62030i −1.11086 1.92406i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.271142 0.469632i 0.0503498 0.0872084i −0.839752 0.542970i \(-0.817300\pi\)
0.890102 + 0.455762i \(0.150633\pi\)
\(30\) 0 0
\(31\) 4.55273 0.817695 0.408847 0.912603i \(-0.365931\pi\)
0.408847 + 0.912603i \(0.365931\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 10.2245 2.86683i 1.72826 0.484582i
\(36\) 0 0
\(37\) 1.54073 + 2.66863i 0.253295 + 0.438720i 0.964431 0.264335i \(-0.0851523\pi\)
−0.711136 + 0.703054i \(0.751819\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.43985 + 7.69005i 0.693388 + 1.20098i 0.970721 + 0.240210i \(0.0772163\pi\)
−0.277333 + 0.960774i \(0.589450\pi\)
\(42\) 0 0
\(43\) −2.12120 + 3.67403i −0.323480 + 0.560284i −0.981204 0.192975i \(-0.938186\pi\)
0.657723 + 0.753260i \(0.271520\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.757595 −0.110507 −0.0552533 0.998472i \(-0.517597\pi\)
−0.0552533 + 0.998472i \(0.517597\pi\)
\(48\) 0 0
\(49\) 0.161936 + 6.99813i 0.0231338 + 0.999732i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.19645 + 5.53641i −0.439066 + 0.760485i −0.997618 0.0689852i \(-0.978024\pi\)
0.558552 + 0.829470i \(0.311357\pi\)
\(54\) 0 0
\(55\) −7.10856 −0.958518
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.17648 0.673921 0.336960 0.941519i \(-0.390601\pi\)
0.336960 + 0.941519i \(0.390601\pi\)
\(60\) 0 0
\(61\) 12.5015 1.60065 0.800324 0.599568i \(-0.204661\pi\)
0.800324 + 0.599568i \(0.204661\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.918533 0.113930
\(66\) 0 0
\(67\) −6.18803 −0.755989 −0.377994 0.925808i \(-0.623386\pi\)
−0.377994 + 0.925808i \(0.623386\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 13.9068 1.65043 0.825217 0.564816i \(-0.191053\pi\)
0.825217 + 0.564816i \(0.191053\pi\)
\(72\) 0 0
\(73\) −5.08824 + 8.81309i −0.595534 + 1.03149i 0.397938 + 0.917412i \(0.369726\pi\)
−0.993471 + 0.114082i \(0.963607\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.16039 4.54006i 0.132238 0.517387i
\(78\) 0 0
\(79\) 11.5829 1.30318 0.651590 0.758571i \(-0.274102\pi\)
0.651590 + 0.758571i \(0.274102\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 8.66871 15.0146i 0.951515 1.64807i 0.209365 0.977838i \(-0.432860\pi\)
0.742150 0.670234i \(-0.233806\pi\)
\(84\) 0 0
\(85\) 12.2313 + 21.1853i 1.32667 + 2.29786i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5.04596 8.73985i −0.534870 0.926423i −0.999170 0.0407443i \(-0.987027\pi\)
0.464299 0.885678i \(-0.346306\pi\)
\(90\) 0 0
\(91\) −0.149939 + 0.586643i −0.0157179 + 0.0614969i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 26.3121 2.69957
\(96\) 0 0
\(97\) 4.91267 8.50899i 0.498806 0.863957i −0.501193 0.865335i \(-0.667105\pi\)
0.999999 + 0.00137861i \(0.000438824\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.730408 + 1.26510i 0.0726783 + 0.125883i 0.900074 0.435736i \(-0.143512\pi\)
−0.827396 + 0.561619i \(0.810179\pi\)
\(102\) 0 0
\(103\) 8.68226 15.0381i 0.855488 1.48175i −0.0207031 0.999786i \(-0.506590\pi\)
0.876191 0.481963i \(-0.160076\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.97436 + 6.88380i 0.384216 + 0.665482i 0.991660 0.128881i \(-0.0411384\pi\)
−0.607444 + 0.794363i \(0.707805\pi\)
\(108\) 0 0
\(109\) −8.83065 + 15.2951i −0.845823 + 1.46501i 0.0390825 + 0.999236i \(0.487556\pi\)
−0.884905 + 0.465772i \(0.845777\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.97381 + 8.61490i 0.467897 + 0.810421i 0.999327 0.0366810i \(-0.0116785\pi\)
−0.531430 + 0.847102i \(0.678345\pi\)
\(114\) 0 0
\(115\) 3.08879 + 5.34995i 0.288031 + 0.498885i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −15.5271 + 4.35359i −1.42337 + 0.399093i
\(120\) 0 0
\(121\) 3.93153 6.80961i 0.357412 0.619055i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 24.5170 2.19287
\(126\) 0 0
\(127\) −11.4189 −1.01326 −0.506631 0.862163i \(-0.669109\pi\)
−0.506631 + 0.862163i \(0.669109\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1.16249 + 2.01349i −0.101567 + 0.175919i −0.912330 0.409455i \(-0.865719\pi\)
0.810763 + 0.585374i \(0.199052\pi\)
\(132\) 0 0
\(133\) −4.29514 + 16.8049i −0.372436 + 1.45717i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −9.12366 15.8026i −0.779487 1.35011i −0.932238 0.361846i \(-0.882147\pi\)
0.152751 0.988265i \(-0.451187\pi\)
\(138\) 0 0
\(139\) −5.08202 8.80232i −0.431051 0.746603i 0.565913 0.824465i \(-0.308524\pi\)
−0.996964 + 0.0778624i \(0.975191\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.202670 0.351035i 0.0169481 0.0293550i
\(144\) 0 0
\(145\) 1.08824 + 1.88489i 0.0903735 + 0.156531i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −8.18226 + 14.1721i −0.670317 + 1.16102i 0.307498 + 0.951549i \(0.400508\pi\)
−0.977814 + 0.209474i \(0.932825\pi\)
\(150\) 0 0
\(151\) −11.6483 20.1754i −0.947925 1.64185i −0.749786 0.661680i \(-0.769844\pi\)
−0.198139 0.980174i \(-0.563490\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −9.13630 + 15.8245i −0.733845 + 1.27106i
\(156\) 0 0
\(157\) 13.3541 1.06577 0.532885 0.846187i \(-0.321108\pi\)
0.532885 + 0.846187i \(0.321108\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3.92108 + 1.09942i −0.309024 + 0.0866464i
\(162\) 0 0
\(163\) −1.31865 2.28397i −0.103285 0.178894i 0.809751 0.586773i \(-0.199602\pi\)
−0.913036 + 0.407879i \(0.866269\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.75073 + 6.49645i 0.290240 + 0.502711i 0.973866 0.227122i \(-0.0729315\pi\)
−0.683626 + 0.729832i \(0.739598\pi\)
\(168\) 0 0
\(169\) 6.47381 11.2130i 0.497986 0.862536i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 5.04374 0.383469 0.191734 0.981447i \(-0.438589\pi\)
0.191734 + 0.981447i \(0.438589\pi\)
\(174\) 0 0
\(175\) −7.27792 + 28.4751i −0.550159 + 2.15252i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1.35938 2.35452i 0.101605 0.175985i −0.810741 0.585405i \(-0.800936\pi\)
0.912346 + 0.409420i \(0.134269\pi\)
\(180\) 0 0
\(181\) 16.5527 1.23035 0.615177 0.788389i \(-0.289084\pi\)
0.615177 + 0.788389i \(0.289084\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −12.3676 −0.909285
\(186\) 0 0
\(187\) 10.7951 0.789419
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 22.0426 1.59495 0.797475 0.603352i \(-0.206169\pi\)
0.797475 + 0.603352i \(0.206169\pi\)
\(192\) 0 0
\(193\) −12.7470 −0.917547 −0.458773 0.888553i \(-0.651711\pi\)
−0.458773 + 0.888553i \(0.651711\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.35097 0.666229 0.333114 0.942886i \(-0.391900\pi\)
0.333114 + 0.942886i \(0.391900\pi\)
\(198\) 0 0
\(199\) 7.48059 12.9568i 0.530285 0.918480i −0.469091 0.883150i \(-0.655418\pi\)
0.999376 0.0353302i \(-0.0112483\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.38147 + 0.387347i −0.0969603 + 0.0271864i
\(204\) 0 0
\(205\) −35.6391 −2.48914
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 5.80565 10.0557i 0.401585 0.695566i
\(210\) 0 0
\(211\) 4.70167 + 8.14353i 0.323676 + 0.560624i 0.981244 0.192772i \(-0.0617477\pi\)
−0.657567 + 0.753396i \(0.728414\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −8.51355 14.7459i −0.580619 1.00566i
\(216\) 0 0
\(217\) −8.61534 8.41828i −0.584847 0.571470i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.39489 −0.0938307
\(222\) 0 0
\(223\) −0.877799 + 1.52039i −0.0587818 + 0.101813i −0.893919 0.448229i \(-0.852055\pi\)
0.835137 + 0.550042i \(0.185388\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 11.1823 + 19.3682i 0.742192 + 1.28552i 0.951495 + 0.307664i \(0.0995473\pi\)
−0.209303 + 0.977851i \(0.567119\pi\)
\(228\) 0 0
\(229\) 4.45340 7.71351i 0.294289 0.509723i −0.680530 0.732720i \(-0.738251\pi\)
0.974819 + 0.222997i \(0.0715839\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2.91267 5.04488i −0.190815 0.330501i 0.754706 0.656064i \(-0.227780\pi\)
−0.945521 + 0.325562i \(0.894446\pi\)
\(234\) 0 0
\(235\) 1.52032 2.63327i 0.0991748 0.171776i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −3.92475 6.79787i −0.253871 0.439718i 0.710717 0.703478i \(-0.248371\pi\)
−0.964588 + 0.263760i \(0.915037\pi\)
\(240\) 0 0
\(241\) −12.9957 22.5092i −0.837126 1.44994i −0.892288 0.451467i \(-0.850901\pi\)
0.0551625 0.998477i \(-0.482432\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −24.6493 13.4808i −1.57479 0.861256i
\(246\) 0 0
\(247\) −0.750177 + 1.29935i −0.0477326 + 0.0826754i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6.64593 0.419488 0.209744 0.977756i \(-0.432737\pi\)
0.209744 + 0.977756i \(0.432737\pi\)
\(252\) 0 0
\(253\) 2.72611 0.171389
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −10.5621 + 18.2940i −0.658843 + 1.14115i 0.322073 + 0.946715i \(0.395620\pi\)
−0.980916 + 0.194434i \(0.937713\pi\)
\(258\) 0 0
\(259\) 2.01886 7.89888i 0.125446 0.490812i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 13.0966 + 22.6839i 0.807569 + 1.39875i 0.914543 + 0.404488i \(0.132550\pi\)
−0.106974 + 0.994262i \(0.534116\pi\)
\(264\) 0 0
\(265\) −12.8291 22.2206i −0.788085 1.36500i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 8.13475 14.0898i 0.495984 0.859070i −0.504005 0.863701i \(-0.668141\pi\)
0.999989 + 0.00463056i \(0.00147396\pi\)
\(270\) 0 0
\(271\) −5.55950 9.62934i −0.337716 0.584941i 0.646287 0.763095i \(-0.276321\pi\)
−0.984003 + 0.178154i \(0.942988\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 9.83742 17.0389i 0.593219 1.02749i
\(276\) 0 0
\(277\) −0.600882 1.04076i −0.0361035 0.0625331i 0.847409 0.530941i \(-0.178161\pi\)
−0.883513 + 0.468407i \(0.844828\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −4.23141 + 7.32901i −0.252425 + 0.437212i −0.964193 0.265202i \(-0.914561\pi\)
0.711768 + 0.702414i \(0.247895\pi\)
\(282\) 0 0
\(283\) −0.552731 −0.0328564 −0.0164282 0.999865i \(-0.505229\pi\)
−0.0164282 + 0.999865i \(0.505229\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.81765 22.7618i 0.343405 1.34359i
\(288\) 0 0
\(289\) −10.0746 17.4497i −0.592624 1.02645i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −13.6921 23.7155i −0.799903 1.38547i −0.919679 0.392671i \(-0.871551\pi\)
0.119776 0.992801i \(-0.461782\pi\)
\(294\) 0 0
\(295\) −10.3880 + 17.9926i −0.604814 + 1.04757i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.352255 −0.0203714
\(300\) 0 0
\(301\) 10.8076 3.03030i 0.622937 0.174663i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −25.0876 + 43.4530i −1.43651 + 2.48811i
\(306\) 0 0
\(307\) 15.4899 0.884056 0.442028 0.897001i \(-0.354259\pi\)
0.442028 + 0.897001i \(0.354259\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 17.7710 1.00770 0.503849 0.863792i \(-0.331917\pi\)
0.503849 + 0.863792i \(0.331917\pi\)
\(312\) 0 0
\(313\) 16.6897 0.943356 0.471678 0.881771i \(-0.343648\pi\)
0.471678 + 0.881771i \(0.343648\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.55383 0.536597 0.268298 0.963336i \(-0.413539\pi\)
0.268298 + 0.963336i \(0.413539\pi\)
\(318\) 0 0
\(319\) 0.960462 0.0537755
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −39.9579 −2.22332
\(324\) 0 0
\(325\) −1.27114 + 2.20168i −0.0705103 + 0.122127i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.43363 + 1.40084i 0.0790386 + 0.0772308i
\(330\) 0 0
\(331\) 24.8815 1.36761 0.683806 0.729664i \(-0.260323\pi\)
0.683806 + 0.729664i \(0.260323\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 12.4180 21.5086i 0.678467 1.17514i
\(336\) 0 0
\(337\) −10.2668 17.7827i −0.559270 0.968683i −0.997558 0.0698488i \(-0.977748\pi\)
0.438288 0.898835i \(-0.355585\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4.03177 + 6.98322i 0.218332 + 0.378163i
\(342\) 0 0
\(343\) 12.6335 13.5423i 0.682147 0.731215i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −12.9716 −0.696353 −0.348176 0.937429i \(-0.613199\pi\)
−0.348176 + 0.937429i \(0.613199\pi\)
\(348\) 0 0
\(349\) −8.38657 + 14.5260i −0.448923 + 0.777557i −0.998316 0.0580068i \(-0.981526\pi\)
0.549393 + 0.835564i \(0.314859\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.94973 12.0373i −0.369897 0.640680i 0.619652 0.784876i \(-0.287274\pi\)
−0.989549 + 0.144197i \(0.953940\pi\)
\(354\) 0 0
\(355\) −27.9078 + 48.3377i −1.48119 + 2.56550i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.88247 + 3.26053i 0.0993530 + 0.172084i 0.911417 0.411484i \(-0.134989\pi\)
−0.812064 + 0.583568i \(0.801656\pi\)
\(360\) 0 0
\(361\) −11.9895 + 20.7664i −0.631024 + 1.09297i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −20.4219 35.3718i −1.06893 1.85144i
\(366\) 0 0
\(367\) 17.6283 + 30.5332i 0.920191 + 1.59382i 0.799118 + 0.601175i \(0.205300\pi\)
0.121074 + 0.992644i \(0.461366\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 16.2860 4.56636i 0.845524 0.237074i
\(372\) 0 0
\(373\) 8.26683 14.3186i 0.428040 0.741387i −0.568659 0.822573i \(-0.692538\pi\)
0.996699 + 0.0811864i \(0.0258709\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.124106 −0.00639179
\(378\) 0 0
\(379\) 6.51811 0.334813 0.167406 0.985888i \(-0.446461\pi\)
0.167406 + 0.985888i \(0.446461\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3.44663 5.96973i 0.176114 0.305039i −0.764432 0.644704i \(-0.776980\pi\)
0.940546 + 0.339665i \(0.110314\pi\)
\(384\) 0 0
\(385\) 13.4518 + 13.1442i 0.685570 + 0.669889i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 13.8516 + 23.9917i 0.702305 + 1.21643i 0.967656 + 0.252275i \(0.0811788\pi\)
−0.265351 + 0.964152i \(0.585488\pi\)
\(390\) 0 0
\(391\) −4.69067 8.12448i −0.237218 0.410873i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −23.2443 + 40.2603i −1.16955 + 2.02572i
\(396\) 0 0
\(397\) −3.75604 6.50566i −0.188510 0.326510i 0.756243 0.654290i \(-0.227033\pi\)
−0.944754 + 0.327781i \(0.893699\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0.428407 0.742022i 0.0213936 0.0370548i −0.855130 0.518413i \(-0.826523\pi\)
0.876524 + 0.481358i \(0.159856\pi\)
\(402\) 0 0
\(403\) −0.520965 0.902337i −0.0259511 0.0449486i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −2.72886 + 4.72652i −0.135264 + 0.234285i
\(408\) 0 0
\(409\) 1.49544 0.0739448 0.0369724 0.999316i \(-0.488229\pi\)
0.0369724 + 0.999316i \(0.488229\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −9.79569 9.57164i −0.482014 0.470990i
\(414\) 0 0
\(415\) 34.7923 + 60.2620i 1.70789 + 2.95814i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6.97436 + 12.0800i 0.340720 + 0.590144i 0.984567 0.175010i \(-0.0559959\pi\)
−0.643847 + 0.765155i \(0.722663\pi\)
\(420\) 0 0
\(421\) −5.86405 + 10.1568i −0.285797 + 0.495014i −0.972802 0.231638i \(-0.925591\pi\)
0.687005 + 0.726652i \(0.258925\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −67.7068 −3.28426
\(426\) 0 0
\(427\) −23.6571 23.1160i −1.14485 1.11866i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −8.69844 + 15.0661i −0.418989 + 0.725711i −0.995838 0.0911402i \(-0.970949\pi\)
0.576849 + 0.816851i \(0.304282\pi\)
\(432\) 0 0
\(433\) 9.99800 0.480473 0.240237 0.970714i \(-0.422775\pi\)
0.240237 + 0.970714i \(0.422775\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −10.0906 −0.482700
\(438\) 0 0
\(439\) 5.62575 0.268502 0.134251 0.990947i \(-0.457137\pi\)
0.134251 + 0.990947i \(0.457137\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −29.1250 −1.38377 −0.691886 0.722007i \(-0.743220\pi\)
−0.691886 + 0.722007i \(0.743220\pi\)
\(444\) 0 0
\(445\) 40.5044 1.92009
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −17.9088 −0.845168 −0.422584 0.906324i \(-0.638877\pi\)
−0.422584 + 0.906324i \(0.638877\pi\)
\(450\) 0 0
\(451\) −7.86361 + 13.6202i −0.370283 + 0.641349i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.73818 1.69842i −0.0814871 0.0796234i
\(456\) 0 0
\(457\) −7.03554 −0.329109 −0.164554 0.986368i \(-0.552619\pi\)
−0.164554 + 0.986368i \(0.552619\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 7.02409 12.1661i 0.327144 0.566631i −0.654800 0.755802i \(-0.727247\pi\)
0.981944 + 0.189172i \(0.0605803\pi\)
\(462\) 0 0
\(463\) −5.64208 9.77236i −0.262209 0.454160i 0.704619 0.709586i \(-0.251118\pi\)
−0.966829 + 0.255425i \(0.917784\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −18.8813 32.7033i −0.873720 1.51333i −0.858120 0.513450i \(-0.828367\pi\)
−0.0156005 0.999878i \(-0.504966\pi\)
\(468\) 0 0
\(469\) 11.7099 + 11.4421i 0.540712 + 0.528345i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −7.51390 −0.345490
\(474\) 0 0
\(475\) −36.4129 + 63.0690i −1.67074 + 2.89381i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −9.61956 16.6616i −0.439529 0.761286i 0.558124 0.829757i \(-0.311521\pi\)
−0.997653 + 0.0684710i \(0.978188\pi\)
\(480\) 0 0
\(481\) 0.352609 0.610737i 0.0160776 0.0278472i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 19.7172 + 34.1512i 0.895313 + 1.55073i
\(486\) 0 0
\(487\) 7.06196 12.2317i 0.320008 0.554270i −0.660481 0.750842i \(-0.729648\pi\)
0.980489 + 0.196572i \(0.0629811\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 12.9592 + 22.4459i 0.584839 + 1.01297i 0.994895 + 0.100911i \(0.0321758\pi\)
−0.410056 + 0.912060i \(0.634491\pi\)
\(492\) 0 0
\(493\) −1.65261 2.86241i −0.0744300 0.128917i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −26.3165 25.7145i −1.18045 1.15345i
\(498\) 0 0
\(499\) 8.43208 14.6048i 0.377472 0.653800i −0.613222 0.789911i \(-0.710127\pi\)
0.990694 + 0.136110i \(0.0434602\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −7.12392 −0.317640 −0.158820 0.987308i \(-0.550769\pi\)
−0.158820 + 0.987308i \(0.550769\pi\)
\(504\) 0 0
\(505\) −5.86306 −0.260903
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3.79201 6.56796i 0.168078 0.291120i −0.769666 0.638447i \(-0.779577\pi\)
0.937744 + 0.347327i \(0.112911\pi\)
\(510\) 0 0
\(511\) 25.9247 7.26893i 1.14684 0.321559i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 34.8467 + 60.3562i 1.53553 + 2.65961i
\(516\) 0 0
\(517\) −0.670904 1.16204i −0.0295063 0.0511064i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −13.6691 + 23.6755i −0.598853 + 1.03724i 0.394138 + 0.919051i \(0.371043\pi\)
−0.992991 + 0.118192i \(0.962290\pi\)
\(522\) 0 0
\(523\) −1.12652 1.95119i −0.0492592 0.0853194i 0.840344 0.542053i \(-0.182353\pi\)
−0.889604 + 0.456733i \(0.849019\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 13.8745 24.0313i 0.604382 1.04682i
\(528\) 0 0
\(529\) 10.3155 + 17.8669i 0.448498 + 0.776822i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.01610 1.75993i 0.0440120 0.0762310i
\(534\) 0 0
\(535\) −31.9026 −1.37927
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −10.5907 + 6.44572i −0.456174 + 0.277637i
\(540\) 0 0
\(541\) −9.33120 16.1621i −0.401180 0.694863i 0.592689 0.805431i \(-0.298066\pi\)
−0.993869 + 0.110568i \(0.964733\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −35.4422 61.3877i −1.51818 2.62956i
\(546\) 0 0
\(547\) 19.8979 34.4642i 0.850774 1.47358i −0.0297373 0.999558i \(-0.509467\pi\)
0.880511 0.474026i \(-0.157200\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −3.55512 −0.151453
\(552\) 0 0
\(553\) −21.9189 21.4176i −0.932086 0.910767i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −3.86525 + 6.69481i −0.163776 + 0.283668i −0.936220 0.351415i \(-0.885701\pi\)
0.772444 + 0.635083i \(0.219034\pi\)
\(558\) 0 0
\(559\) 0.970909 0.0410651
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −23.8631 −1.00571 −0.502854 0.864371i \(-0.667717\pi\)
−0.502854 + 0.864371i \(0.667717\pi\)
\(564\) 0 0
\(565\) −39.9253 −1.67967
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15.5132 0.650347 0.325173 0.945654i \(-0.394577\pi\)
0.325173 + 0.945654i \(0.394577\pi\)
\(570\) 0 0
\(571\) 31.5934 1.32214 0.661071 0.750324i \(-0.270102\pi\)
0.661071 + 0.750324i \(0.270102\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −17.0981 −0.713041
\(576\) 0 0
\(577\) 6.33842 10.9785i 0.263872 0.457039i −0.703396 0.710799i \(-0.748334\pi\)
0.967267 + 0.253759i \(0.0816671\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −44.1672 + 12.3839i −1.83236 + 0.513771i
\(582\) 0 0
\(583\) −11.3227 −0.468939
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 13.8041 23.9094i 0.569756 0.986847i −0.426833 0.904330i \(-0.640371\pi\)
0.996590 0.0825166i \(-0.0262958\pi\)
\(588\) 0 0
\(589\) −14.9235 25.8482i −0.614911 1.06506i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −11.4142 19.7700i −0.468726 0.811857i 0.530635 0.847600i \(-0.321953\pi\)
−0.999361 + 0.0357436i \(0.988620\pi\)
\(594\) 0 0
\(595\) 16.0270 62.7063i 0.657043 2.57071i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −34.8105 −1.42232 −0.711159 0.703031i \(-0.751829\pi\)
−0.711159 + 0.703031i \(0.751829\pi\)
\(600\) 0 0
\(601\) −0.892988 + 1.54670i −0.0364257 + 0.0630912i −0.883664 0.468123i \(-0.844931\pi\)
0.847238 + 0.531214i \(0.178264\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 15.7794 + 27.3307i 0.641523 + 1.11115i
\(606\) 0 0
\(607\) −8.63997 + 14.9649i −0.350686 + 0.607405i −0.986370 0.164544i \(-0.947385\pi\)
0.635684 + 0.771949i \(0.280718\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0.0866908 + 0.150153i 0.00350714 + 0.00607454i
\(612\) 0 0
\(613\) 1.73973 3.01330i 0.0702671 0.121706i −0.828751 0.559617i \(-0.810948\pi\)
0.899018 + 0.437911i \(0.144282\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 23.8562 + 41.3201i 0.960414 + 1.66349i 0.721461 + 0.692455i \(0.243471\pi\)
0.238953 + 0.971031i \(0.423196\pi\)
\(618\) 0 0
\(619\) 1.35261 + 2.34279i 0.0543660 + 0.0941646i 0.891928 0.452178i \(-0.149353\pi\)
−0.837562 + 0.546343i \(0.816020\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6.61185 + 25.8691i −0.264898 + 1.03642i
\(624\) 0 0
\(625\) −21.4287 + 37.1155i −0.857147 + 1.48462i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 18.7816 0.748871
\(630\) 0 0
\(631\) 1.45861 0.0580663 0.0290332 0.999578i \(-0.490757\pi\)
0.0290332 + 0.999578i \(0.490757\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 22.9151 39.6902i 0.909359 1.57506i
\(636\) 0 0
\(637\) 1.36848 0.832884i 0.0542210 0.0330001i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 11.8155 + 20.4651i 0.466686 + 0.808324i 0.999276 0.0380495i \(-0.0121144\pi\)
−0.532590 + 0.846374i \(0.678781\pi\)
\(642\) 0 0
\(643\) −4.12220 7.13986i −0.162564 0.281569i 0.773224 0.634133i \(-0.218643\pi\)
−0.935787 + 0.352565i \(0.885310\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 2.10644 3.64846i 0.0828127 0.143436i −0.821644 0.570000i \(-0.806943\pi\)
0.904457 + 0.426565i \(0.140276\pi\)
\(648\) 0 0
\(649\) 4.58414 + 7.93997i 0.179943 + 0.311671i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −19.6534 + 34.0407i −0.769097 + 1.33211i 0.168956 + 0.985624i \(0.445960\pi\)
−0.938053 + 0.346491i \(0.887373\pi\)
\(654\) 0 0
\(655\) −4.66570 8.08123i −0.182304 0.315760i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 18.5076 32.0561i 0.720953 1.24873i −0.239665 0.970856i \(-0.577038\pi\)
0.960618 0.277872i \(-0.0896291\pi\)
\(660\) 0 0
\(661\) −6.03954 −0.234911 −0.117455 0.993078i \(-0.537474\pi\)
−0.117455 + 0.993078i \(0.537474\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −49.7916 48.6528i −1.93084 1.88667i
\(666\) 0 0
\(667\) −0.417337 0.722849i −0.0161594 0.0279888i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 11.0709 + 19.1754i 0.427388 + 0.740259i
\(672\) 0 0
\(673\) 17.4194 30.1714i 0.671470 1.16302i −0.306017 0.952026i \(-0.598997\pi\)
0.977487 0.210994i \(-0.0676701\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −27.1024 −1.04163 −0.520814 0.853670i \(-0.674372\pi\)
−0.520814 + 0.853670i \(0.674372\pi\)
\(678\) 0 0
\(679\) −25.0301 + 7.01811i −0.960567 + 0.269330i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 11.0557 19.1491i 0.423036 0.732720i −0.573199 0.819416i \(-0.694298\pi\)
0.996235 + 0.0866964i \(0.0276310\pi\)
\(684\) 0 0
\(685\) 73.2365 2.79822
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.46307 0.0557384
\(690\) 0 0
\(691\) −40.5186 −1.54140 −0.770701 0.637197i \(-0.780094\pi\)
−0.770701 + 0.637197i \(0.780094\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 40.7938 1.54740
\(696\) 0 0
\(697\) 54.1219 2.05001
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −31.5703 −1.19239 −0.596197 0.802838i \(-0.703322\pi\)
−0.596197 + 0.802838i \(0.703322\pi\)
\(702\) 0 0
\(703\) 10.1008 17.4951i 0.380959 0.659839i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0.957073 3.74458i 0.0359944 0.140830i
\(708\) 0 0
\(709\) −20.0708 −0.753776 −0.376888 0.926259i \(-0.623006\pi\)
−0.376888 + 0.926259i \(0.623006\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3.50374 6.06866i 0.131216 0.227273i
\(714\) 0 0
\(715\) 0.813426 + 1.40889i 0.0304204 + 0.0526897i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 7.08603 + 12.2734i 0.264264 + 0.457719i 0.967371 0.253366i \(-0.0815376\pi\)
−0.703106 + 0.711085i \(0.748204\pi\)
\(720\) 0 0
\(721\) −44.2362 + 12.4033i −1.64744 + 0.461921i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −6.02399 −0.223726
\(726\) 0 0
\(727\) −12.5067 + 21.6622i −0.463847 + 0.803407i −0.999149 0.0412542i \(-0.986865\pi\)
0.535302 + 0.844661i \(0.320198\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 12.9288 + 22.3933i 0.478188 + 0.828245i
\(732\) 0 0
\(733\) −18.3515 + 31.7858i −0.677829 + 1.17403i 0.297805 + 0.954627i \(0.403746\pi\)
−0.975633 + 0.219407i \(0.929588\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.47994 9.49154i −0.201856 0.349625i
\(738\) 0 0
\(739\) 5.70944 9.88905i 0.210025 0.363774i −0.741697 0.670735i \(-0.765979\pi\)
0.951722 + 0.306961i \(0.0993120\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −22.3645 38.7365i −0.820474 1.42110i −0.905329 0.424710i \(-0.860376\pi\)
0.0848549 0.996393i \(-0.472957\pi\)
\(744\) 0 0
\(745\) −32.8399 56.8803i −1.20316 2.08393i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 5.20771 20.3754i 0.190286 0.744500i
\(750\) 0 0
\(751\) 15.6654 27.1333i 0.571638 0.990107i −0.424760 0.905306i \(-0.639641\pi\)
0.996398 0.0848004i \(-0.0270253\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 93.5020 3.40289
\(756\) 0 0
\(757\) −32.8242 −1.19302 −0.596508 0.802607i \(-0.703446\pi\)
−0.596508 + 0.802607i \(0.703446\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 2.70422 4.68385i 0.0980279 0.169789i −0.812840 0.582486i \(-0.802080\pi\)
0.910868 + 0.412697i \(0.135413\pi\)
\(762\) 0 0
\(763\) 44.9923 12.6152i 1.62883 0.456702i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.592340 1.02596i −0.0213882 0.0370454i
\(768\) 0 0
\(769\) −1.54660 2.67879i −0.0557718 0.0965997i 0.836792 0.547522i \(-0.184429\pi\)
−0.892563 + 0.450922i \(0.851095\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −11.0166 + 19.0812i −0.396238 + 0.686304i −0.993258 0.115922i \(-0.963018\pi\)
0.597020 + 0.802226i \(0.296351\pi\)
\(774\) 0 0
\(775\) −25.2871 43.7986i −0.908341 1.57329i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 29.1069 50.4147i 1.04286 1.80629i
\(780\) 0 0
\(781\) 12.3155 + 21.3310i 0.440682 + 0.763283i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −26.7986 + 46.4165i −0.956483 + 1.65668i
\(786\) 0 0
\(787\) −35.6704 −1.27151 −0.635756 0.771890i \(-0.719312\pi\)
−0.635756 + 0.771890i \(0.719312\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 6.51731 25.4992i 0.231729 0.906649i
\(792\) 0 0
\(793\) −1.43053 2.47775i −0.0507996 0.0879875i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −7.95927 13.7859i −0.281932 0.488320i 0.689929 0.723877i \(-0.257642\pi\)
−0.971860 + 0.235557i \(0.924308\pi\)
\(798\) 0 0
\(799\) −2.30878 + 3.99892i −0.0816786 + 0.141471i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −18.0240 −0.636053
\(804\) 0 0
\(805\) 4.04732 15.8353i 0.142649 0.558121i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 7.52433 13.0325i 0.264541 0.458199i −0.702902 0.711287i \(-0.748113\pi\)
0.967443 + 0.253088i \(0.0814461\pi\)
\(810\) 0 0
\(811\) −11.8358 −0.415610 −0.207805 0.978170i \(-0.566632\pi\)
−0.207805 + 0.978170i \(0.566632\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 10.5849 0.370774
\(816\) 0 0
\(817\) 27.8125 0.973036
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 48.9514 1.70842 0.854208 0.519931i \(-0.174042\pi\)
0.854208 + 0.519931i \(0.174042\pi\)
\(822\) 0 0
\(823\) 13.3157 0.464155 0.232078 0.972697i \(-0.425448\pi\)
0.232078 + 0.972697i \(0.425448\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −27.3154 −0.949850 −0.474925 0.880026i \(-0.657525\pi\)
−0.474925 + 0.880026i \(0.657525\pi\)
\(828\) 0 0
\(829\) −5.36003 + 9.28384i −0.186161 + 0.322441i −0.943967 0.330039i \(-0.892938\pi\)
0.757806 + 0.652480i \(0.226271\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 37.4327 + 20.4721i 1.29697 + 0.709315i
\(834\) 0 0
\(835\) −30.1075 −1.04191
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 8.96082 15.5206i 0.309362 0.535830i −0.668861 0.743387i \(-0.733218\pi\)
0.978223 + 0.207557i \(0.0665513\pi\)
\(840\) 0 0
\(841\) 14.3530 + 24.8601i 0.494930 + 0.857244i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 25.9830 + 45.0038i 0.893841 + 1.54818i
\(846\) 0 0
\(847\) −20.0312 + 5.61648i −0.688280 + 0.192985i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 4.74294 0.162586
\(852\) 0 0
\(853\) −5.13174 + 8.88844i −0.175707 + 0.304334i −0.940406 0.340054i \(-0.889555\pi\)
0.764698 + 0.644388i \(0.222888\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −16.3185 28.2644i −0.557428 0.965494i −0.997710 0.0676344i \(-0.978455\pi\)
0.440282 0.897860i \(-0.354878\pi\)
\(858\) 0 0
\(859\) −2.71212 + 4.69753i −0.0925363 + 0.160278i −0.908578 0.417716i \(-0.862831\pi\)
0.816041 + 0.577993i \(0.196164\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 9.27005 + 16.0562i 0.315556 + 0.546559i 0.979556 0.201174i \(-0.0644756\pi\)
−0.663999 + 0.747733i \(0.731142\pi\)
\(864\) 0 0
\(865\) −10.1216 + 17.5312i −0.344146 + 0.596079i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 10.2575 + 17.7665i 0.347962 + 0.602688i
\(870\) 0 0
\(871\) 0.708091 + 1.22645i 0.0239927 + 0.0415566i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −46.3946 45.3335i −1.56842 1.53255i
\(876\) 0 0
\(877\) −8.40689 + 14.5612i −0.283881 + 0.491695i −0.972337 0.233582i \(-0.924955\pi\)
0.688457 + 0.725278i \(0.258289\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −3.86926 −0.130359 −0.0651793 0.997874i \(-0.520762\pi\)
−0.0651793 + 0.997874i \(0.520762\pi\)
\(882\) 0 0
\(883\) 34.9696 1.17682 0.588411 0.808562i \(-0.299754\pi\)
0.588411 + 0.808562i \(0.299754\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −18.7381 + 32.4553i −0.629163 + 1.08974i 0.358556 + 0.933508i \(0.383269\pi\)
−0.987720 + 0.156235i \(0.950064\pi\)
\(888\) 0 0
\(889\) 21.6085 + 21.1142i 0.724725 + 0.708149i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.48333 + 4.30126i 0.0831015 + 0.143936i
\(894\) 0 0
\(895\) 5.45595 + 9.44998i 0.182372 + 0.315878i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.23444 2.13811i 0.0411708 0.0713098i
\(900\) 0 0
\(901\) 19.4824 + 33.7445i 0.649053 + 1.12419i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −33.2176 + 57.5345i −1.10419 + 1.91251i
\(906\) 0 0
\(907\) 19.3273 + 33.4759i 0.641753 + 1.11155i 0.985041 + 0.172319i \(0.0551261\pi\)
−0.343288 + 0.939230i \(0.611541\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −25.4700 + 44.1153i −0.843857 + 1.46160i 0.0427526 + 0.999086i \(0.486387\pi\)
−0.886610 + 0.462518i \(0.846946\pi\)
\(912\) 0 0
\(913\) 30.7070 1.01625
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5.92289 1.66070i 0.195591 0.0548412i
\(918\) 0 0
\(919\) −3.71044 6.42667i −0.122396 0.211996i 0.798316 0.602239i \(-0.205725\pi\)
−0.920712 + 0.390242i \(0.872391\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1.59134 2.75628i −0.0523796 0.0907242i
\(924\) 0 0
\(925\) 17.1153 29.6446i 0.562749 0.974709i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −25.9829 −0.852472 −0.426236 0.904612i \(-0.640161\pi\)
−0.426236 + 0.904612i \(0.640161\pi\)
\(930\) 0 0
\(931\) 39.2012 23.8587i 1.28477 0.781936i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −21.6634 + 37.5221i −0.708469 + 1.22710i
\(936\) 0 0
\(937\) 25.0972 0.819891 0.409945 0.912110i \(-0.365548\pi\)
0.409945 + 0.912110i \(0.365548\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 51.3308 1.67334 0.836668 0.547711i \(-0.184501\pi\)
0.836668 + 0.547711i \(0.184501\pi\)
\(942\) 0 0
\(943\) 13.6675 0.445075
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −44.9808 −1.46168 −0.730839 0.682549i \(-0.760871\pi\)
−0.730839 + 0.682549i \(0.760871\pi\)
\(948\) 0 0
\(949\) 2.32897 0.0756016
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 11.6027 0.375847 0.187924 0.982184i \(-0.439824\pi\)
0.187924 + 0.982184i \(0.439824\pi\)
\(954\) 0 0
\(955\) −44.2346 + 76.6166i −1.43140 + 2.47925i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −11.9550 + 46.7743i −0.386046 + 1.51042i
\(960\) 0 0
\(961\) −10.2726 −0.331376
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 25.5803 44.3063i 0.823458 1.42627i
\(966\) 0 0
\(967\) −9.52123 16.4912i −0.306182 0.530323i 0.671342 0.741148i \(-0.265718\pi\)
−0.977524 + 0.210825i \(0.932385\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 8.39580 + 14.5420i 0.269434 + 0.466673i 0.968716 0.248173i \(-0.0798300\pi\)
−0.699282 + 0.714846i \(0.746497\pi\)
\(972\) 0 0
\(973\) −6.65910 + 26.0540i −0.213481 + 0.835252i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 8.66019 0.277064 0.138532 0.990358i \(-0.455762\pi\)
0.138532 + 0.990358i \(0.455762\pi\)
\(978\) 0 0
\(979\) 8.93711 15.4795i 0.285631 0.494728i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 7.34851 + 12.7280i 0.234381 + 0.405960i 0.959093 0.283092i \(-0.0913603\pi\)
−0.724712 + 0.689052i \(0.758027\pi\)
\(984\) 0 0
\(985\) −18.7653 + 32.5024i −0.597911 + 1.03561i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 3.26492 + 5.65501i 0.103818 + 0.179819i
\(990\) 0 0
\(991\) −20.9319 + 36.2551i −0.664923 + 1.15168i 0.314383 + 0.949296i \(0.398202\pi\)
−0.979306 + 0.202384i \(0.935131\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 30.0237 + 52.0025i 0.951815 + 1.64859i
\(996\) 0 0
\(997\) 7.77891 + 13.4735i 0.246361 + 0.426709i 0.962513 0.271235i \(-0.0874319\pi\)
−0.716153 + 0.697944i \(0.754099\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.i.l.865.1 8
3.2 odd 2 2268.2.i.m.865.4 8
7.2 even 3 2268.2.l.m.541.4 8
9.2 odd 6 2268.2.k.d.1621.4 yes 8
9.4 even 3 2268.2.l.m.109.4 8
9.5 odd 6 2268.2.l.l.109.1 8
9.7 even 3 2268.2.k.c.1621.1 yes 8
21.2 odd 6 2268.2.l.l.541.1 8
63.2 odd 6 2268.2.k.d.1297.4 yes 8
63.16 even 3 2268.2.k.c.1297.1 8
63.23 odd 6 2268.2.i.m.2053.4 8
63.58 even 3 inner 2268.2.i.l.2053.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2268.2.i.l.865.1 8 1.1 even 1 trivial
2268.2.i.l.2053.1 8 63.58 even 3 inner
2268.2.i.m.865.4 8 3.2 odd 2
2268.2.i.m.2053.4 8 63.23 odd 6
2268.2.k.c.1297.1 8 63.16 even 3
2268.2.k.c.1621.1 yes 8 9.7 even 3
2268.2.k.d.1297.4 yes 8 63.2 odd 6
2268.2.k.d.1621.4 yes 8 9.2 odd 6
2268.2.l.l.109.1 8 9.5 odd 6
2268.2.l.l.541.1 8 21.2 odd 6
2268.2.l.m.109.4 8 9.4 even 3
2268.2.l.m.541.4 8 7.2 even 3