L(s) = 1 | + (−2 + 3.46i)5-s + (0.5 + 0.866i)7-s + (−1 − 1.73i)11-s + (3 − 5.19i)13-s − 4·17-s − 4·19-s + (−1 + 1.73i)23-s + (−5.49 − 9.52i)25-s + (1 + 1.73i)29-s − 3.99·35-s + 2·37-s + (2 + 3.46i)43-s + (−6 − 10.3i)47-s + (−0.499 + 0.866i)49-s − 6·53-s + ⋯ |
L(s) = 1 | + (−0.894 + 1.54i)5-s + (0.188 + 0.327i)7-s + (−0.301 − 0.522i)11-s + (0.832 − 1.44i)13-s − 0.970·17-s − 0.917·19-s + (−0.208 + 0.361i)23-s + (−1.09 − 1.90i)25-s + (0.185 + 0.321i)29-s − 0.676·35-s + 0.328·37-s + (0.304 + 0.528i)43-s + (−0.875 − 1.51i)47-s + (−0.0714 + 0.123i)49-s − 0.824·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 + 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6483079835\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6483079835\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.5 - 0.866i)T \) |
good | 5 | \( 1 + (2 - 3.46i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (1 + 1.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-3 + 5.19i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 4T + 17T^{2} \) |
| 19 | \( 1 + 4T + 19T^{2} \) |
| 23 | \( 1 + (1 - 1.73i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1 - 1.73i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 2T + 37T^{2} \) |
| 41 | \( 1 + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2 - 3.46i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (6 + 10.3i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 6T + 53T^{2} \) |
| 59 | \( 1 + (-4 + 6.92i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3 + 5.19i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4 + 6.92i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 14T + 71T^{2} \) |
| 73 | \( 1 + 2T + 73T^{2} \) |
| 79 | \( 1 + (6 + 10.3i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-2 - 3.46i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 + (-1 - 1.73i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.452445320215308997712389181311, −8.205117874874520281137929420529, −7.33160728326287922592009280461, −6.48540086436010212859951352585, −5.94992491857325362193599234821, −4.80409568455309079988321728165, −3.65201360089004495319850394693, −3.15863311698894899894797157765, −2.17742265112025065238118950789, −0.24271602992348347599577944285,
1.15292812845011734846901312917, 2.19041690873596747963118378836, 3.90156045537588755392256473343, 4.35650923732835223176343893425, 4.89126820607902665139450353310, 6.10929636377027391011311032325, 6.92145705418427138185999443698, 7.83623571249929562897794842347, 8.513209991261983443747381470336, 8.975304893681558232217073111616