L(s) = 1 | + (−2 + 3.46i)5-s + (0.5 + 0.866i)7-s + (−1 − 1.73i)11-s + (3 − 5.19i)13-s − 4·17-s − 4·19-s + (−1 + 1.73i)23-s + (−5.49 − 9.52i)25-s + (1 + 1.73i)29-s − 3.99·35-s + 2·37-s + (2 + 3.46i)43-s + (−6 − 10.3i)47-s + (−0.499 + 0.866i)49-s − 6·53-s + ⋯ |
L(s) = 1 | + (−0.894 + 1.54i)5-s + (0.188 + 0.327i)7-s + (−0.301 − 0.522i)11-s + (0.832 − 1.44i)13-s − 0.970·17-s − 0.917·19-s + (−0.208 + 0.361i)23-s + (−1.09 − 1.90i)25-s + (0.185 + 0.321i)29-s − 0.676·35-s + 0.328·37-s + (0.304 + 0.528i)43-s + (−0.875 − 1.51i)47-s + (−0.0714 + 0.123i)49-s − 0.824·53-s + ⋯ |
Λ(s)=(=(2268s/2ΓC(s)L(s)(0.173+0.984i)Λ(2−s)
Λ(s)=(=(2268s/2ΓC(s+1/2)L(s)(0.173+0.984i)Λ(1−s)
Degree: |
2 |
Conductor: |
2268
= 22⋅34⋅7
|
Sign: |
0.173+0.984i
|
Analytic conductor: |
18.1100 |
Root analytic conductor: |
4.25559 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2268(757,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2268, ( :1/2), 0.173+0.984i)
|
Particular Values
L(1) |
≈ |
0.6483079835 |
L(21) |
≈ |
0.6483079835 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(−0.5−0.866i)T |
good | 5 | 1+(2−3.46i)T+(−2.5−4.33i)T2 |
| 11 | 1+(1+1.73i)T+(−5.5+9.52i)T2 |
| 13 | 1+(−3+5.19i)T+(−6.5−11.2i)T2 |
| 17 | 1+4T+17T2 |
| 19 | 1+4T+19T2 |
| 23 | 1+(1−1.73i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−1−1.73i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−15.5−26.8i)T2 |
| 37 | 1−2T+37T2 |
| 41 | 1+(−20.5−35.5i)T2 |
| 43 | 1+(−2−3.46i)T+(−21.5+37.2i)T2 |
| 47 | 1+(6+10.3i)T+(−23.5+40.7i)T2 |
| 53 | 1+6T+53T2 |
| 59 | 1+(−4+6.92i)T+(−29.5−51.0i)T2 |
| 61 | 1+(3+5.19i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−4+6.92i)T+(−33.5−58.0i)T2 |
| 71 | 1−14T+71T2 |
| 73 | 1+2T+73T2 |
| 79 | 1+(6+10.3i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−2−3.46i)T+(−41.5+71.8i)T2 |
| 89 | 1+89T2 |
| 97 | 1+(−1−1.73i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.452445320215308997712389181311, −8.205117874874520281137929420529, −7.33160728326287922592009280461, −6.48540086436010212859951352585, −5.94992491857325362193599234821, −4.80409568455309079988321728165, −3.65201360089004495319850394693, −3.15863311698894899894797157765, −2.17742265112025065238118950789, −0.24271602992348347599577944285,
1.15292812845011734846901312917, 2.19041690873596747963118378836, 3.90156045537588755392256473343, 4.35650923732835223176343893425, 4.89126820607902665139450353310, 6.10929636377027391011311032325, 6.92145705418427138185999443698, 7.83623571249929562897794842347, 8.513209991261983443747381470336, 8.975304893681558232217073111616