Properties

Label 2268.2.j.a
Level $2268$
Weight $2$
Character orbit 2268.j
Analytic conductor $18.110$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2268,2,Mod(757,2268)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2268, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2268.757");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.j (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 \zeta_{6} q^{5} + ( - \zeta_{6} + 1) q^{7} +O(q^{10}) \) Copy content Toggle raw display \( q - 4 \zeta_{6} q^{5} + ( - \zeta_{6} + 1) q^{7} + (2 \zeta_{6} - 2) q^{11} + 6 \zeta_{6} q^{13} - 4 q^{17} - 4 q^{19} - 2 \zeta_{6} q^{23} + (11 \zeta_{6} - 11) q^{25} + ( - 2 \zeta_{6} + 2) q^{29} - 4 q^{35} + 2 q^{37} + ( - 4 \zeta_{6} + 4) q^{43} + (12 \zeta_{6} - 12) q^{47} - \zeta_{6} q^{49} - 6 q^{53} + 8 q^{55} + 8 \zeta_{6} q^{59} + (6 \zeta_{6} - 6) q^{61} + ( - 24 \zeta_{6} + 24) q^{65} + 8 \zeta_{6} q^{67} + 14 q^{71} - 2 q^{73} + 2 \zeta_{6} q^{77} + (12 \zeta_{6} - 12) q^{79} + ( - 4 \zeta_{6} + 4) q^{83} + 16 \zeta_{6} q^{85} + 6 q^{91} + 16 \zeta_{6} q^{95} + ( - 2 \zeta_{6} + 2) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{5} + q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{5} + q^{7} - 2 q^{11} + 6 q^{13} - 8 q^{17} - 8 q^{19} - 2 q^{23} - 11 q^{25} + 2 q^{29} - 8 q^{35} + 4 q^{37} + 4 q^{43} - 12 q^{47} - q^{49} - 12 q^{53} + 16 q^{55} + 8 q^{59} - 6 q^{61} + 24 q^{65} + 8 q^{67} + 28 q^{71} - 4 q^{73} + 2 q^{77} - 12 q^{79} + 4 q^{83} + 16 q^{85} + 12 q^{91} + 16 q^{95} + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(1\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
757.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 0 −2.00000 + 3.46410i 0 0.500000 + 0.866025i 0 0 0
1513.1 0 0 0 −2.00000 3.46410i 0 0.500000 0.866025i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2268.2.j.a 2
3.b odd 2 1 2268.2.j.n 2
9.c even 3 1 84.2.a.a 1
9.c even 3 1 inner 2268.2.j.a 2
9.d odd 6 1 252.2.a.a 1
9.d odd 6 1 2268.2.j.n 2
36.f odd 6 1 336.2.a.f 1
36.h even 6 1 1008.2.a.a 1
45.h odd 6 1 6300.2.a.w 1
45.j even 6 1 2100.2.a.r 1
45.k odd 12 2 2100.2.k.i 2
45.l even 12 2 6300.2.k.g 2
63.g even 3 1 588.2.i.e 2
63.h even 3 1 588.2.i.e 2
63.i even 6 1 1764.2.k.a 2
63.j odd 6 1 1764.2.k.k 2
63.k odd 6 1 588.2.i.d 2
63.l odd 6 1 588.2.a.d 1
63.n odd 6 1 1764.2.k.k 2
63.o even 6 1 1764.2.a.k 1
63.s even 6 1 1764.2.k.a 2
63.t odd 6 1 588.2.i.d 2
72.j odd 6 1 4032.2.a.bm 1
72.l even 6 1 4032.2.a.bn 1
72.n even 6 1 1344.2.a.k 1
72.p odd 6 1 1344.2.a.a 1
144.v odd 12 2 5376.2.c.p 2
144.x even 12 2 5376.2.c.q 2
180.p odd 6 1 8400.2.a.e 1
252.n even 6 1 2352.2.q.z 2
252.s odd 6 1 7056.2.a.cd 1
252.u odd 6 1 2352.2.q.b 2
252.bi even 6 1 2352.2.a.a 1
252.bj even 6 1 2352.2.q.z 2
252.bl odd 6 1 2352.2.q.b 2
504.be even 6 1 9408.2.a.df 1
504.bn odd 6 1 9408.2.a.bn 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.2.a.a 1 9.c even 3 1
252.2.a.a 1 9.d odd 6 1
336.2.a.f 1 36.f odd 6 1
588.2.a.d 1 63.l odd 6 1
588.2.i.d 2 63.k odd 6 1
588.2.i.d 2 63.t odd 6 1
588.2.i.e 2 63.g even 3 1
588.2.i.e 2 63.h even 3 1
1008.2.a.a 1 36.h even 6 1
1344.2.a.a 1 72.p odd 6 1
1344.2.a.k 1 72.n even 6 1
1764.2.a.k 1 63.o even 6 1
1764.2.k.a 2 63.i even 6 1
1764.2.k.a 2 63.s even 6 1
1764.2.k.k 2 63.j odd 6 1
1764.2.k.k 2 63.n odd 6 1
2100.2.a.r 1 45.j even 6 1
2100.2.k.i 2 45.k odd 12 2
2268.2.j.a 2 1.a even 1 1 trivial
2268.2.j.a 2 9.c even 3 1 inner
2268.2.j.n 2 3.b odd 2 1
2268.2.j.n 2 9.d odd 6 1
2352.2.a.a 1 252.bi even 6 1
2352.2.q.b 2 252.u odd 6 1
2352.2.q.b 2 252.bl odd 6 1
2352.2.q.z 2 252.n even 6 1
2352.2.q.z 2 252.bj even 6 1
4032.2.a.bm 1 72.j odd 6 1
4032.2.a.bn 1 72.l even 6 1
5376.2.c.p 2 144.v odd 12 2
5376.2.c.q 2 144.x even 12 2
6300.2.a.w 1 45.h odd 6 1
6300.2.k.g 2 45.l even 12 2
7056.2.a.cd 1 252.s odd 6 1
8400.2.a.e 1 180.p odd 6 1
9408.2.a.bn 1 504.bn odd 6 1
9408.2.a.df 1 504.be even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2268, [\chi])\):

\( T_{5}^{2} + 4T_{5} + 16 \) Copy content Toggle raw display
\( T_{11}^{2} + 2T_{11} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$7$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$11$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$13$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$17$ \( (T + 4)^{2} \) Copy content Toggle raw display
$19$ \( (T + 4)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$29$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( (T - 2)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$47$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$53$ \( (T + 6)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$61$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$67$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$71$ \( (T - 14)^{2} \) Copy content Toggle raw display
$73$ \( (T + 2)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$83$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
show more
show less