L(s) = 1 | + (0.385 + 0.483i)2-s + (0.708 − 0.341i)3-s + (0.137 − 0.602i)4-s + (0.437 + 0.210i)6-s + (−0.550 − 0.834i)7-s + (0.900 − 0.433i)8-s + (−0.238 + 0.298i)9-s + (−0.108 − 0.473i)12-s + (0.190 − 0.587i)14-s + (−0.437 − 1.91i)17-s − 0.236·18-s + (−0.674 − 0.403i)21-s + (0.490 − 0.614i)24-s + (0.623 − 0.781i)25-s + (−0.241 + 1.05i)27-s + (−0.578 + 0.217i)28-s + ⋯ |
L(s) = 1 | + (0.385 + 0.483i)2-s + (0.708 − 0.341i)3-s + (0.137 − 0.602i)4-s + (0.437 + 0.210i)6-s + (−0.550 − 0.834i)7-s + (0.900 − 0.433i)8-s + (−0.238 + 0.298i)9-s + (−0.108 − 0.473i)12-s + (0.190 − 0.587i)14-s + (−0.437 − 1.91i)17-s − 0.236·18-s + (−0.674 − 0.403i)21-s + (0.490 − 0.614i)24-s + (0.623 − 0.781i)25-s + (−0.241 + 1.05i)27-s + (−0.578 + 0.217i)28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2303 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.582 + 0.812i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2303 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.582 + 0.812i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.762790037\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.762790037\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (0.550 + 0.834i)T \) |
| 47 | \( 1 + (-0.623 - 0.781i)T \) |
good | 2 | \( 1 + (-0.385 - 0.483i)T + (-0.222 + 0.974i)T^{2} \) |
| 3 | \( 1 + (-0.708 + 0.341i)T + (0.623 - 0.781i)T^{2} \) |
| 5 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 11 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 13 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 17 | \( 1 + (0.437 + 1.91i)T + (-0.900 + 0.433i)T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 29 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (-0.429 - 1.87i)T + (-0.900 + 0.433i)T^{2} \) |
| 41 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 43 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 53 | \( 1 + (0.382 - 1.67i)T + (-0.900 - 0.433i)T^{2} \) |
| 59 | \( 1 + (-1.24 - 0.599i)T + (0.623 + 0.781i)T^{2} \) |
| 61 | \( 1 + (0.416 + 1.82i)T + (-0.900 + 0.433i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (-0.174 + 0.766i)T + (-0.900 - 0.433i)T^{2} \) |
| 73 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 79 | \( 1 - 0.947T + T^{2} \) |
| 83 | \( 1 + (0.277 - 0.347i)T + (-0.222 - 0.974i)T^{2} \) |
| 89 | \( 1 + (-0.385 + 0.483i)T + (-0.222 - 0.974i)T^{2} \) |
| 97 | \( 1 - 0.618T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.152609853406232742107727603890, −8.080807149102222040025702266315, −7.39415848666228967288461796149, −6.81842095028109360437194408407, −6.12364731473370043704973415363, −4.99718922773366558875485119500, −4.49122203718087769088710745735, −3.19680946232453016208377440169, −2.40392279372308042359341831534, −1.00423766740494491729012477061,
1.97194515513467837255925467401, 2.69619479397757732159364510172, 3.65190466843018323311321176815, 3.98758122759132627073675584944, 5.28810086975675907860435298883, 6.13716963849216008039524924649, 7.00677322438659286275154354628, 8.031700284358141728320270060571, 8.661683946213194744827706028966, 9.090889299717543807047256839645