L(s) = 1 | + (0.385 + 0.483i)2-s + (0.708 − 0.341i)3-s + (0.137 − 0.602i)4-s + (0.437 + 0.210i)6-s + (−0.550 − 0.834i)7-s + (0.900 − 0.433i)8-s + (−0.238 + 0.298i)9-s + (−0.108 − 0.473i)12-s + (0.190 − 0.587i)14-s + (−0.437 − 1.91i)17-s − 0.236·18-s + (−0.674 − 0.403i)21-s + (0.490 − 0.614i)24-s + (0.623 − 0.781i)25-s + (−0.241 + 1.05i)27-s + (−0.578 + 0.217i)28-s + ⋯ |
L(s) = 1 | + (0.385 + 0.483i)2-s + (0.708 − 0.341i)3-s + (0.137 − 0.602i)4-s + (0.437 + 0.210i)6-s + (−0.550 − 0.834i)7-s + (0.900 − 0.433i)8-s + (−0.238 + 0.298i)9-s + (−0.108 − 0.473i)12-s + (0.190 − 0.587i)14-s + (−0.437 − 1.91i)17-s − 0.236·18-s + (−0.674 − 0.403i)21-s + (0.490 − 0.614i)24-s + (0.623 − 0.781i)25-s + (−0.241 + 1.05i)27-s + (−0.578 + 0.217i)28-s + ⋯ |
Λ(s)=(=(2303s/2ΓC(s)L(s)(0.582+0.812i)Λ(1−s)
Λ(s)=(=(2303s/2ΓC(s)L(s)(0.582+0.812i)Λ(1−s)
Degree: |
2 |
Conductor: |
2303
= 72⋅47
|
Sign: |
0.582+0.812i
|
Analytic conductor: |
1.14934 |
Root analytic conductor: |
1.07207 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2303(939,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2303, ( :0), 0.582+0.812i)
|
Particular Values
L(21) |
≈ |
1.762790037 |
L(21) |
≈ |
1.762790037 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(0.550+0.834i)T |
| 47 | 1+(−0.623−0.781i)T |
good | 2 | 1+(−0.385−0.483i)T+(−0.222+0.974i)T2 |
| 3 | 1+(−0.708+0.341i)T+(0.623−0.781i)T2 |
| 5 | 1+(−0.623+0.781i)T2 |
| 11 | 1+(0.222−0.974i)T2 |
| 13 | 1+(0.222−0.974i)T2 |
| 17 | 1+(0.437+1.91i)T+(−0.900+0.433i)T2 |
| 19 | 1−T2 |
| 23 | 1+(0.900+0.433i)T2 |
| 29 | 1+(0.900−0.433i)T2 |
| 31 | 1−T2 |
| 37 | 1+(−0.429−1.87i)T+(−0.900+0.433i)T2 |
| 41 | 1+(−0.623+0.781i)T2 |
| 43 | 1+(−0.623−0.781i)T2 |
| 53 | 1+(0.382−1.67i)T+(−0.900−0.433i)T2 |
| 59 | 1+(−1.24−0.599i)T+(0.623+0.781i)T2 |
| 61 | 1+(0.416+1.82i)T+(−0.900+0.433i)T2 |
| 67 | 1−T2 |
| 71 | 1+(−0.174+0.766i)T+(−0.900−0.433i)T2 |
| 73 | 1+(0.222+0.974i)T2 |
| 79 | 1−0.947T+T2 |
| 83 | 1+(0.277−0.347i)T+(−0.222−0.974i)T2 |
| 89 | 1+(−0.385+0.483i)T+(−0.222−0.974i)T2 |
| 97 | 1−0.618T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.152609853406232742107727603890, −8.080807149102222040025702266315, −7.39415848666228967288461796149, −6.81842095028109360437194408407, −6.12364731473370043704973415363, −4.99718922773366558875485119500, −4.49122203718087769088710745735, −3.19680946232453016208377440169, −2.40392279372308042359341831534, −1.00423766740494491729012477061,
1.97194515513467837255925467401, 2.69619479397757732159364510172, 3.65190466843018323311321176815, 3.98758122759132627073675584944, 5.28810086975675907860435298883, 6.13716963849216008039524924649, 7.00677322438659286275154354628, 8.031700284358141728320270060571, 8.661683946213194744827706028966, 9.090889299717543807047256839645