Properties

Label 2303.1.j.b
Level $2303$
Weight $1$
Character orbit 2303.j
Analytic conductor $1.149$
Analytic rank $0$
Dimension $24$
Projective image $D_{35}$
CM discriminant -47
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2303,1,Mod(281,2303)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2303, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([4, 7]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2303.281");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2303 = 7^{2} \cdot 47 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2303.j (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.14934672409\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(4\) over \(\Q(\zeta_{14})\)
Coefficient field: \(\Q(\zeta_{35})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{24} - x^{23} + x^{19} - x^{18} + x^{17} - x^{16} + x^{14} - x^{13} + x^{12} - x^{11} + x^{10} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{35}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{35} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + ( - \zeta_{70}^{27} - \zeta_{70}^{13}) q^{2} + ( - \zeta_{70}^{9} + \zeta_{70}^{6}) q^{3} + (\zeta_{70}^{26} + \cdots - \zeta_{70}^{5}) q^{4} + ( - \zeta_{70}^{33} + \cdots - \zeta_{70}) q^{6} + \zeta_{70}^{8} q^{7}+ \cdots + ( - \zeta_{70}^{29} + \zeta_{70}^{8}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{2} + 2 q^{3} - 2 q^{4} + 4 q^{6} + q^{7} + 4 q^{8} - 2 q^{9} + 10 q^{12} + 18 q^{14} + 2 q^{17} - 18 q^{18} - 5 q^{21} - 2 q^{24} - 4 q^{25} - 3 q^{27} + 3 q^{28} - 4 q^{32} + 4 q^{34} + 4 q^{36}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2303\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(2257\)
\(\chi(n)\) \(-1\) \(-\zeta_{70}^{15}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
281.1
0.753071 0.657939i
−0.393025 0.919528i
0.858449 + 0.512899i
−0.995974 + 0.0896393i
0.473869 + 0.880596i
0.983930 0.178557i
−0.691063 + 0.722795i
0.134233 0.990950i
0.936235 + 0.351375i
−0.550897 0.834573i
−0.0448648 + 0.998993i
−0.963963 + 0.266037i
0.936235 0.351375i
−0.550897 + 0.834573i
−0.0448648 0.998993i
−0.963963 0.266037i
0.473869 0.880596i
0.983930 + 0.178557i
−0.691063 0.722795i
0.134233 + 0.990950i
−0.137526 0.602539i 0.590905 + 0.740971i 0.556829 0.268155i 0 0.365199 0.457945i 0.858449 + 0.512899i −0.623490 0.781831i 0.0226513 0.0992418i 0
281.2 −0.137526 0.602539i 1.22694 + 1.53853i 0.556829 0.268155i 0 0.758291 0.950866i −0.995974 + 0.0896393i −0.623490 0.781831i −0.639185 + 2.80045i 0
281.3 0.360046 + 1.57747i −0.861741 1.08059i −1.45780 + 0.702039i 0 1.39433 1.74843i −0.393025 0.919528i −0.623490 0.781831i −0.202554 + 0.887448i 0
281.4 0.360046 + 1.57747i 0.167386 + 0.209896i −1.45780 + 0.702039i 0 −0.270836 + 0.339618i 0.753071 0.657939i −0.623490 0.781831i 0.206483 0.904661i 0
610.1 −0.556829 + 0.268155i 0.0199667 0.0874800i −0.385338 + 0.483198i 0 0.0123401 + 0.0540656i −0.691063 + 0.722795i 0.222521 0.974928i 0.893715 + 0.430390i 0
610.2 −0.556829 + 0.268155i 0.429004 1.87959i −0.385338 + 0.483198i 0 0.265139 + 1.16165i 0.134233 0.990950i 0.222521 0.974928i −2.44784 1.17882i 0
610.3 1.45780 0.702039i −0.416664 + 1.82552i 1.00883 1.26503i 0 0.674176 + 2.95376i 0.983930 0.178557i 0.222521 0.974928i −2.25796 1.08737i 0
610.4 1.45780 0.702039i 0.245172 1.07417i 1.00883 1.26503i 0 −0.396697 1.73804i 0.473869 + 0.880596i 0.222521 0.974928i −0.192762 0.0928294i 0
939.1 −1.00883 1.26503i −1.54687 + 0.744934i −0.360046 + 1.57747i 0 2.50289 + 1.20533i −0.963963 + 0.266037i 0.900969 0.433884i 1.21439 1.52280i 0
939.2 −1.00883 1.26503i 1.79468 0.864274i −0.360046 + 1.57747i 0 −2.90386 1.39842i −0.0448648 + 0.998993i 0.900969 0.433884i 1.85043 2.32037i 0
939.3 0.385338 + 0.483198i −1.35699 + 0.653491i 0.137526 0.602539i 0 −0.838665 0.403880i 0.936235 + 0.351375i 0.900969 0.433884i 0.790876 0.991727i 0
939.4 0.385338 + 0.483198i 0.708207 0.341054i 0.137526 0.602539i 0 0.437696 + 0.210783i −0.550897 0.834573i 0.900969 0.433884i −0.238251 + 0.298758i 0
1268.1 −1.00883 + 1.26503i −1.54687 0.744934i −0.360046 1.57747i 0 2.50289 1.20533i −0.963963 0.266037i 0.900969 + 0.433884i 1.21439 + 1.52280i 0
1268.2 −1.00883 + 1.26503i 1.79468 + 0.864274i −0.360046 1.57747i 0 −2.90386 + 1.39842i −0.0448648 0.998993i 0.900969 + 0.433884i 1.85043 + 2.32037i 0
1268.3 0.385338 0.483198i −1.35699 0.653491i 0.137526 + 0.602539i 0 −0.838665 + 0.403880i 0.936235 0.351375i 0.900969 + 0.433884i 0.790876 + 0.991727i 0
1268.4 0.385338 0.483198i 0.708207 + 0.341054i 0.137526 + 0.602539i 0 0.437696 0.210783i −0.550897 + 0.834573i 0.900969 + 0.433884i −0.238251 0.298758i 0
1597.1 −0.556829 0.268155i 0.0199667 + 0.0874800i −0.385338 0.483198i 0 0.0123401 0.0540656i −0.691063 0.722795i 0.222521 + 0.974928i 0.893715 0.430390i 0
1597.2 −0.556829 0.268155i 0.429004 + 1.87959i −0.385338 0.483198i 0 0.265139 1.16165i 0.134233 + 0.990950i 0.222521 + 0.974928i −2.44784 + 1.17882i 0
1597.3 1.45780 + 0.702039i −0.416664 1.82552i 1.00883 + 1.26503i 0 0.674176 2.95376i 0.983930 + 0.178557i 0.222521 + 0.974928i −2.25796 + 1.08737i 0
1597.4 1.45780 + 0.702039i 0.245172 + 1.07417i 1.00883 + 1.26503i 0 −0.396697 + 1.73804i 0.473869 0.880596i 0.222521 + 0.974928i −0.192762 + 0.0928294i 0
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 281.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
47.b odd 2 1 CM by \(\Q(\sqrt{-47}) \)
49.e even 7 1 inner
2303.j odd 14 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2303.1.j.b 24
47.b odd 2 1 CM 2303.1.j.b 24
49.e even 7 1 inner 2303.1.j.b 24
2303.j odd 14 1 inner 2303.1.j.b 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2303.1.j.b 24 1.a even 1 1 trivial
2303.1.j.b 24 47.b odd 2 1 CM
2303.1.j.b 24 49.e even 7 1 inner
2303.1.j.b 24 2303.j odd 14 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{12} - T_{2}^{11} + 2 T_{2}^{10} - 3 T_{2}^{9} + 5 T_{2}^{8} - 8 T_{2}^{7} + 13 T_{2}^{6} + \cdots + 1 \) acting on \(S_{1}^{\mathrm{new}}(2303, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{12} - T^{11} + 2 T^{10} + \cdots + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{24} - 2 T^{23} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{24} \) Copy content Toggle raw display
$7$ \( T^{24} - T^{23} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{24} \) Copy content Toggle raw display
$13$ \( T^{24} \) Copy content Toggle raw display
$17$ \( T^{24} - 2 T^{23} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{24} \) Copy content Toggle raw display
$23$ \( T^{24} \) Copy content Toggle raw display
$29$ \( T^{24} \) Copy content Toggle raw display
$31$ \( T^{24} \) Copy content Toggle raw display
$37$ \( T^{24} - 2 T^{23} + \cdots + 1 \) Copy content Toggle raw display
$41$ \( T^{24} \) Copy content Toggle raw display
$43$ \( T^{24} \) Copy content Toggle raw display
$47$ \( (T^{6} + T^{5} + T^{4} + \cdots + 1)^{4} \) Copy content Toggle raw display
$53$ \( T^{24} + 5 T^{23} + \cdots + 1 \) Copy content Toggle raw display
$59$ \( T^{24} + 5 T^{23} + \cdots + 1 \) Copy content Toggle raw display
$61$ \( T^{24} - 2 T^{23} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( T^{24} \) Copy content Toggle raw display
$71$ \( T^{24} + 5 T^{23} + \cdots + 1 \) Copy content Toggle raw display
$73$ \( T^{24} \) Copy content Toggle raw display
$79$ \( (T^{12} - T^{11} - 12 T^{10} + \cdots + 1)^{2} \) Copy content Toggle raw display
$83$ \( (T^{6} + 2 T^{5} + 4 T^{4} + \cdots + 1)^{4} \) Copy content Toggle raw display
$89$ \( (T^{12} - T^{11} + 2 T^{10} + \cdots + 1)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + T - 1)^{12} \) Copy content Toggle raw display
show more
show less