L(s) = 1 | + (−0.707 + 0.707i)2-s + (0.541 − 1.30i)3-s − 1.00i·4-s + (0.541 + 1.30i)6-s + (0.707 + 0.707i)8-s + (−0.707 − 0.707i)9-s + (0.541 + 1.30i)11-s + (−1.30 − 0.541i)12-s − 1.00·16-s + 1.00·18-s + (1.41 − 1.41i)19-s + (−1.30 − 0.541i)22-s + (1.30 − 0.541i)24-s + (0.707 + 0.707i)25-s + (0.707 − 0.707i)32-s + 2·33-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s + (0.541 − 1.30i)3-s − 1.00i·4-s + (0.541 + 1.30i)6-s + (0.707 + 0.707i)8-s + (−0.707 − 0.707i)9-s + (0.541 + 1.30i)11-s + (−1.30 − 0.541i)12-s − 1.00·16-s + 1.00·18-s + (1.41 − 1.41i)19-s + (−1.30 − 0.541i)22-s + (1.30 − 0.541i)24-s + (0.707 + 0.707i)25-s + (0.707 − 0.707i)32-s + 2·33-s + ⋯ |
Λ(s)=(=(2312s/2ΓC(s)L(s)(0.880+0.473i)Λ(1−s)
Λ(s)=(=(2312s/2ΓC(s)L(s)(0.880+0.473i)Λ(1−s)
Degree: |
2 |
Conductor: |
2312
= 23⋅172
|
Sign: |
0.880+0.473i
|
Analytic conductor: |
1.15383 |
Root analytic conductor: |
1.07416 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2312(1555,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2312, ( :0), 0.880+0.473i)
|
Particular Values
L(21) |
≈ |
1.077538977 |
L(21) |
≈ |
1.077538977 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707−0.707i)T |
| 17 | 1 |
good | 3 | 1+(−0.541+1.30i)T+(−0.707−0.707i)T2 |
| 5 | 1+(−0.707−0.707i)T2 |
| 7 | 1+(−0.707+0.707i)T2 |
| 11 | 1+(−0.541−1.30i)T+(−0.707+0.707i)T2 |
| 13 | 1+T2 |
| 19 | 1+(−1.41+1.41i)T−iT2 |
| 23 | 1+(0.707−0.707i)T2 |
| 29 | 1+(−0.707−0.707i)T2 |
| 31 | 1+(0.707+0.707i)T2 |
| 37 | 1+(0.707+0.707i)T2 |
| 41 | 1+(1.30−0.541i)T+(0.707−0.707i)T2 |
| 43 | 1+iT2 |
| 47 | 1+T2 |
| 53 | 1+iT2 |
| 59 | 1+iT2 |
| 61 | 1+(−0.707+0.707i)T2 |
| 67 | 1+T2 |
| 71 | 1+(0.707+0.707i)T2 |
| 73 | 1+(1.30+0.541i)T+(0.707+0.707i)T2 |
| 79 | 1+(0.707−0.707i)T2 |
| 83 | 1−iT2 |
| 89 | 1−T2 |
| 97 | 1+(1.30+0.541i)T+(0.707+0.707i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.990925396629051595536406652037, −8.258679943539914262932163886708, −7.28094732821319805000857610502, −7.17678630422060205574388188626, −6.49622144435051606131911562509, −5.35185478267536580066357170319, −4.58109093242638849126710593843, −3.00556307929153473232909537629, −1.95312524339242533792463374034, −1.11802801642614217870563074250,
1.25580621749712773381290629238, 2.78036342817622709384871337151, 3.47604866437947015899334751862, 3.99791724622508570879794814397, 5.05622781685907249182612469876, 6.07202079883697532532805514282, 7.21256402714524788870223068893, 8.182784706772219772736733963901, 8.680812225722410760657951309823, 9.287529051946583893873066094909