L(s) = 1 | + (−0.707 + 0.707i)2-s + (0.541 − 1.30i)3-s − 1.00i·4-s + (0.541 + 1.30i)6-s + (0.707 + 0.707i)8-s + (−0.707 − 0.707i)9-s + (0.541 + 1.30i)11-s + (−1.30 − 0.541i)12-s − 1.00·16-s + 1.00·18-s + (1.41 − 1.41i)19-s + (−1.30 − 0.541i)22-s + (1.30 − 0.541i)24-s + (0.707 + 0.707i)25-s + (0.707 − 0.707i)32-s + 2·33-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s + (0.541 − 1.30i)3-s − 1.00i·4-s + (0.541 + 1.30i)6-s + (0.707 + 0.707i)8-s + (−0.707 − 0.707i)9-s + (0.541 + 1.30i)11-s + (−1.30 − 0.541i)12-s − 1.00·16-s + 1.00·18-s + (1.41 − 1.41i)19-s + (−1.30 − 0.541i)22-s + (1.30 − 0.541i)24-s + (0.707 + 0.707i)25-s + (0.707 − 0.707i)32-s + 2·33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.880 + 0.473i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.880 + 0.473i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.077538977\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.077538977\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 17 | \( 1 \) |
good | 3 | \( 1 + (-0.541 + 1.30i)T + (-0.707 - 0.707i)T^{2} \) |
| 5 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 7 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 11 | \( 1 + (-0.541 - 1.30i)T + (-0.707 + 0.707i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 19 | \( 1 + (-1.41 + 1.41i)T - iT^{2} \) |
| 23 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 29 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 31 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 37 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 41 | \( 1 + (1.30 - 0.541i)T + (0.707 - 0.707i)T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 73 | \( 1 + (1.30 + 0.541i)T + (0.707 + 0.707i)T^{2} \) |
| 79 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (1.30 + 0.541i)T + (0.707 + 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.990925396629051595536406652037, −8.258679943539914262932163886708, −7.28094732821319805000857610502, −7.17678630422060205574388188626, −6.49622144435051606131911562509, −5.35185478267536580066357170319, −4.58109093242638849126710593843, −3.00556307929153473232909537629, −1.95312524339242533792463374034, −1.11802801642614217870563074250,
1.25580621749712773381290629238, 2.78036342817622709384871337151, 3.47604866437947015899334751862, 3.99791724622508570879794814397, 5.05622781685907249182612469876, 6.07202079883697532532805514282, 7.21256402714524788870223068893, 8.182784706772219772736733963901, 8.680812225722410760657951309823, 9.287529051946583893873066094909