Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2312,1,Mod(155,2312)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2312, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([4, 4, 7]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2312.155");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 2312.p (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 136) |
Projective image: | |
Projective field: | Galois closure of 4.0.314432.1 |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The -expansion and trace form are shown below.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
155.1 |
|
0.707107 | + | 0.707107i | −1.30656 | + | 0.541196i | 1.00000i | 0 | −1.30656 | − | 0.541196i | 0 | −0.707107 | + | 0.707107i | 0.707107 | − | 0.707107i | 0 | ||||||||||||||||||||||||||||||||
155.2 | 0.707107 | + | 0.707107i | 1.30656 | − | 0.541196i | 1.00000i | 0 | 1.30656 | + | 0.541196i | 0 | −0.707107 | + | 0.707107i | 0.707107 | − | 0.707107i | 0 | |||||||||||||||||||||||||||||||||
179.1 | 0.707107 | − | 0.707107i | −1.30656 | − | 0.541196i | − | 1.00000i | 0 | −1.30656 | + | 0.541196i | 0 | −0.707107 | − | 0.707107i | 0.707107 | + | 0.707107i | 0 | ||||||||||||||||||||||||||||||||
179.2 | 0.707107 | − | 0.707107i | 1.30656 | + | 0.541196i | − | 1.00000i | 0 | 1.30656 | − | 0.541196i | 0 | −0.707107 | − | 0.707107i | 0.707107 | + | 0.707107i | 0 | ||||||||||||||||||||||||||||||||
1555.1 | −0.707107 | + | 0.707107i | −0.541196 | + | 1.30656i | − | 1.00000i | 0 | −0.541196 | − | 1.30656i | 0 | 0.707107 | + | 0.707107i | −0.707107 | − | 0.707107i | 0 | ||||||||||||||||||||||||||||||||
1555.2 | −0.707107 | + | 0.707107i | 0.541196 | − | 1.30656i | − | 1.00000i | 0 | 0.541196 | + | 1.30656i | 0 | 0.707107 | + | 0.707107i | −0.707107 | − | 0.707107i | 0 | ||||||||||||||||||||||||||||||||
1579.1 | −0.707107 | − | 0.707107i | −0.541196 | − | 1.30656i | 1.00000i | 0 | −0.541196 | + | 1.30656i | 0 | 0.707107 | − | 0.707107i | −0.707107 | + | 0.707107i | 0 | |||||||||||||||||||||||||||||||||
1579.2 | −0.707107 | − | 0.707107i | 0.541196 | + | 1.30656i | 1.00000i | 0 | 0.541196 | − | 1.30656i | 0 | 0.707107 | − | 0.707107i | −0.707107 | + | 0.707107i | 0 | |||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.d | odd | 2 | 1 | CM by |
17.b | even | 2 | 1 | inner |
17.c | even | 4 | 2 | inner |
17.d | even | 8 | 4 | inner |
136.e | odd | 2 | 1 | inner |
136.j | odd | 4 | 2 | inner |
136.p | odd | 8 | 4 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 2312.1.p.e | 8 | |
8.d | odd | 2 | 1 | CM | 2312.1.p.e | 8 | |
17.b | even | 2 | 1 | inner | 2312.1.p.e | 8 | |
17.c | even | 4 | 2 | inner | 2312.1.p.e | 8 | |
17.d | even | 8 | 4 | inner | 2312.1.p.e | 8 | |
17.e | odd | 16 | 2 | 136.1.j.a | ✓ | 2 | |
17.e | odd | 16 | 2 | 2312.1.e.a | 2 | ||
17.e | odd | 16 | 2 | 2312.1.f.b | 2 | ||
17.e | odd | 16 | 2 | 2312.1.j.b | 2 | ||
51.i | even | 16 | 2 | 1224.1.s.a | 2 | ||
68.i | even | 16 | 2 | 544.1.n.a | 2 | ||
85.o | even | 16 | 1 | 3400.1.bc.a | 2 | ||
85.o | even | 16 | 1 | 3400.1.bc.b | 2 | ||
85.p | odd | 16 | 2 | 3400.1.y.a | 2 | ||
85.r | even | 16 | 1 | 3400.1.bc.a | 2 | ||
85.r | even | 16 | 1 | 3400.1.bc.b | 2 | ||
136.e | odd | 2 | 1 | inner | 2312.1.p.e | 8 | |
136.j | odd | 4 | 2 | inner | 2312.1.p.e | 8 | |
136.p | odd | 8 | 4 | inner | 2312.1.p.e | 8 | |
136.q | odd | 16 | 2 | 544.1.n.a | 2 | ||
136.s | even | 16 | 2 | 136.1.j.a | ✓ | 2 | |
136.s | even | 16 | 2 | 2312.1.e.a | 2 | ||
136.s | even | 16 | 2 | 2312.1.f.b | 2 | ||
136.s | even | 16 | 2 | 2312.1.j.b | 2 | ||
408.bg | odd | 16 | 2 | 1224.1.s.a | 2 | ||
680.ch | odd | 16 | 1 | 3400.1.bc.a | 2 | ||
680.ch | odd | 16 | 1 | 3400.1.bc.b | 2 | ||
680.co | even | 16 | 2 | 3400.1.y.a | 2 | ||
680.cr | odd | 16 | 1 | 3400.1.bc.a | 2 | ||
680.cr | odd | 16 | 1 | 3400.1.bc.b | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
136.1.j.a | ✓ | 2 | 17.e | odd | 16 | 2 | |
136.1.j.a | ✓ | 2 | 136.s | even | 16 | 2 | |
544.1.n.a | 2 | 68.i | even | 16 | 2 | ||
544.1.n.a | 2 | 136.q | odd | 16 | 2 | ||
1224.1.s.a | 2 | 51.i | even | 16 | 2 | ||
1224.1.s.a | 2 | 408.bg | odd | 16 | 2 | ||
2312.1.e.a | 2 | 17.e | odd | 16 | 2 | ||
2312.1.e.a | 2 | 136.s | even | 16 | 2 | ||
2312.1.f.b | 2 | 17.e | odd | 16 | 2 | ||
2312.1.f.b | 2 | 136.s | even | 16 | 2 | ||
2312.1.j.b | 2 | 17.e | odd | 16 | 2 | ||
2312.1.j.b | 2 | 136.s | even | 16 | 2 | ||
2312.1.p.e | 8 | 1.a | even | 1 | 1 | trivial | |
2312.1.p.e | 8 | 8.d | odd | 2 | 1 | CM | |
2312.1.p.e | 8 | 17.b | even | 2 | 1 | inner | |
2312.1.p.e | 8 | 17.c | even | 4 | 2 | inner | |
2312.1.p.e | 8 | 17.d | even | 8 | 4 | inner | |
2312.1.p.e | 8 | 136.e | odd | 2 | 1 | inner | |
2312.1.p.e | 8 | 136.j | odd | 4 | 2 | inner | |
2312.1.p.e | 8 | 136.p | odd | 8 | 4 | inner | |
3400.1.y.a | 2 | 85.p | odd | 16 | 2 | ||
3400.1.y.a | 2 | 680.co | even | 16 | 2 | ||
3400.1.bc.a | 2 | 85.o | even | 16 | 1 | ||
3400.1.bc.a | 2 | 85.r | even | 16 | 1 | ||
3400.1.bc.a | 2 | 680.ch | odd | 16 | 1 | ||
3400.1.bc.a | 2 | 680.cr | odd | 16 | 1 | ||
3400.1.bc.b | 2 | 85.o | even | 16 | 1 | ||
3400.1.bc.b | 2 | 85.r | even | 16 | 1 | ||
3400.1.bc.b | 2 | 680.ch | odd | 16 | 1 | ||
3400.1.bc.b | 2 | 680.cr | odd | 16 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .