Properties

Label 2312.1.p.e
Level 23122312
Weight 11
Character orbit 2312.p
Analytic conductor 1.1541.154
Analytic rank 00
Dimension 88
Projective image D4D_{4}
CM discriminant -8
Inner twists 1616

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2312,1,Mod(155,2312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2312, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 4, 7]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2312.155");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2312=23172 2312 = 2^{3} \cdot 17^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2312.p (of order 88, degree 44, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.153838309211.15383830921
Analytic rank: 00
Dimension: 88
Relative dimension: 22 over Q(ζ8)\Q(\zeta_{8})
Coefficient field: Q(ζ16)\Q(\zeta_{16})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+1 x^{8} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 136)
Projective image: D4D_{4}
Projective field: Galois closure of 4.0.314432.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+ζ166q2+(ζ167ζ163)q3ζ164q4+(ζ165+ζ16)q6+ζ162q8ζ162q9+(ζ165+ζ16)q11++(ζ167ζ163)q99+O(q100) q + \zeta_{16}^{6} q^{2} + ( - \zeta_{16}^{7} - \zeta_{16}^{3}) q^{3} - \zeta_{16}^{4} q^{4} + (\zeta_{16}^{5} + \zeta_{16}) q^{6} + \zeta_{16}^{2} q^{8} - \zeta_{16}^{2} q^{9} + (\zeta_{16}^{5} + \zeta_{16}) q^{11} + \cdots + ( - \zeta_{16}^{7} - \zeta_{16}^{3}) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q8q16+8q18+16q338q50+O(q100) 8 q - 8 q^{16} + 8 q^{18} + 16 q^{33} - 8 q^{50}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2312Z)×\left(\mathbb{Z}/2312\mathbb{Z}\right)^\times.

nn 11571157 17351735 17371737
χ(n)\chi(n) 1-1 1-1 ζ162-\zeta_{16}^{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
155.1
−0.382683 0.923880i
0.382683 + 0.923880i
−0.382683 + 0.923880i
0.382683 0.923880i
−0.923880 0.382683i
0.923880 + 0.382683i
−0.923880 + 0.382683i
0.923880 0.382683i
0.707107 + 0.707107i −1.30656 + 0.541196i 1.00000i 0 −1.30656 0.541196i 0 −0.707107 + 0.707107i 0.707107 0.707107i 0
155.2 0.707107 + 0.707107i 1.30656 0.541196i 1.00000i 0 1.30656 + 0.541196i 0 −0.707107 + 0.707107i 0.707107 0.707107i 0
179.1 0.707107 0.707107i −1.30656 0.541196i 1.00000i 0 −1.30656 + 0.541196i 0 −0.707107 0.707107i 0.707107 + 0.707107i 0
179.2 0.707107 0.707107i 1.30656 + 0.541196i 1.00000i 0 1.30656 0.541196i 0 −0.707107 0.707107i 0.707107 + 0.707107i 0
1555.1 −0.707107 + 0.707107i −0.541196 + 1.30656i 1.00000i 0 −0.541196 1.30656i 0 0.707107 + 0.707107i −0.707107 0.707107i 0
1555.2 −0.707107 + 0.707107i 0.541196 1.30656i 1.00000i 0 0.541196 + 1.30656i 0 0.707107 + 0.707107i −0.707107 0.707107i 0
1579.1 −0.707107 0.707107i −0.541196 1.30656i 1.00000i 0 −0.541196 + 1.30656i 0 0.707107 0.707107i −0.707107 + 0.707107i 0
1579.2 −0.707107 0.707107i 0.541196 + 1.30656i 1.00000i 0 0.541196 1.30656i 0 0.707107 0.707107i −0.707107 + 0.707107i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 155.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by Q(2)\Q(\sqrt{-2})
17.b even 2 1 inner
17.c even 4 2 inner
17.d even 8 4 inner
136.e odd 2 1 inner
136.j odd 4 2 inner
136.p odd 8 4 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2312.1.p.e 8
8.d odd 2 1 CM 2312.1.p.e 8
17.b even 2 1 inner 2312.1.p.e 8
17.c even 4 2 inner 2312.1.p.e 8
17.d even 8 4 inner 2312.1.p.e 8
17.e odd 16 2 136.1.j.a 2
17.e odd 16 2 2312.1.e.a 2
17.e odd 16 2 2312.1.f.b 2
17.e odd 16 2 2312.1.j.b 2
51.i even 16 2 1224.1.s.a 2
68.i even 16 2 544.1.n.a 2
85.o even 16 1 3400.1.bc.a 2
85.o even 16 1 3400.1.bc.b 2
85.p odd 16 2 3400.1.y.a 2
85.r even 16 1 3400.1.bc.a 2
85.r even 16 1 3400.1.bc.b 2
136.e odd 2 1 inner 2312.1.p.e 8
136.j odd 4 2 inner 2312.1.p.e 8
136.p odd 8 4 inner 2312.1.p.e 8
136.q odd 16 2 544.1.n.a 2
136.s even 16 2 136.1.j.a 2
136.s even 16 2 2312.1.e.a 2
136.s even 16 2 2312.1.f.b 2
136.s even 16 2 2312.1.j.b 2
408.bg odd 16 2 1224.1.s.a 2
680.ch odd 16 1 3400.1.bc.a 2
680.ch odd 16 1 3400.1.bc.b 2
680.co even 16 2 3400.1.y.a 2
680.cr odd 16 1 3400.1.bc.a 2
680.cr odd 16 1 3400.1.bc.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
136.1.j.a 2 17.e odd 16 2
136.1.j.a 2 136.s even 16 2
544.1.n.a 2 68.i even 16 2
544.1.n.a 2 136.q odd 16 2
1224.1.s.a 2 51.i even 16 2
1224.1.s.a 2 408.bg odd 16 2
2312.1.e.a 2 17.e odd 16 2
2312.1.e.a 2 136.s even 16 2
2312.1.f.b 2 17.e odd 16 2
2312.1.f.b 2 136.s even 16 2
2312.1.j.b 2 17.e odd 16 2
2312.1.j.b 2 136.s even 16 2
2312.1.p.e 8 1.a even 1 1 trivial
2312.1.p.e 8 8.d odd 2 1 CM
2312.1.p.e 8 17.b even 2 1 inner
2312.1.p.e 8 17.c even 4 2 inner
2312.1.p.e 8 17.d even 8 4 inner
2312.1.p.e 8 136.e odd 2 1 inner
2312.1.p.e 8 136.j odd 4 2 inner
2312.1.p.e 8 136.p odd 8 4 inner
3400.1.y.a 2 85.p odd 16 2
3400.1.y.a 2 680.co even 16 2
3400.1.bc.a 2 85.o even 16 1
3400.1.bc.a 2 85.r even 16 1
3400.1.bc.a 2 680.ch odd 16 1
3400.1.bc.a 2 680.cr odd 16 1
3400.1.bc.b 2 85.o even 16 1
3400.1.bc.b 2 85.r even 16 1
3400.1.bc.b 2 680.ch odd 16 1
3400.1.bc.b 2 680.cr odd 16 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T38+16 T_{3}^{8} + 16 acting on S1new(2312,[χ])S_{1}^{\mathrm{new}}(2312, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4+1)2 (T^{4} + 1)^{2} Copy content Toggle raw display
33 T8+16 T^{8} + 16 Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 T8 T^{8} Copy content Toggle raw display
1111 T8+16 T^{8} + 16 Copy content Toggle raw display
1313 T8 T^{8} Copy content Toggle raw display
1717 T8 T^{8} Copy content Toggle raw display
1919 (T4+16)2 (T^{4} + 16)^{2} Copy content Toggle raw display
2323 T8 T^{8} Copy content Toggle raw display
2929 T8 T^{8} Copy content Toggle raw display
3131 T8 T^{8} Copy content Toggle raw display
3737 T8 T^{8} Copy content Toggle raw display
4141 T8+16 T^{8} + 16 Copy content Toggle raw display
4343 T8 T^{8} Copy content Toggle raw display
4747 T8 T^{8} Copy content Toggle raw display
5353 T8 T^{8} Copy content Toggle raw display
5959 T8 T^{8} Copy content Toggle raw display
6161 T8 T^{8} Copy content Toggle raw display
6767 T8 T^{8} Copy content Toggle raw display
7171 T8 T^{8} Copy content Toggle raw display
7373 T8+16 T^{8} + 16 Copy content Toggle raw display
7979 T8 T^{8} Copy content Toggle raw display
8383 T8 T^{8} Copy content Toggle raw display
8989 T8 T^{8} Copy content Toggle raw display
9797 T8+16 T^{8} + 16 Copy content Toggle raw display
show more
show less