L(s) = 1 | + (0.707 − 0.707i)2-s + (−1.30 − 0.541i)3-s − 1.00i·4-s + (−1.30 + 0.541i)6-s + (−0.707 − 0.707i)8-s + (0.707 + 0.707i)9-s + (−1.30 + 0.541i)11-s + (−0.541 + 1.30i)12-s − 1.00·16-s + 1.00·18-s + (−1.41 + 1.41i)19-s + (−0.541 + 1.30i)22-s + (0.541 + 1.30i)24-s + (−0.707 − 0.707i)25-s + (−0.707 + 0.707i)32-s + 2·33-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)2-s + (−1.30 − 0.541i)3-s − 1.00i·4-s + (−1.30 + 0.541i)6-s + (−0.707 − 0.707i)8-s + (0.707 + 0.707i)9-s + (−1.30 + 0.541i)11-s + (−0.541 + 1.30i)12-s − 1.00·16-s + 1.00·18-s + (−1.41 + 1.41i)19-s + (−0.541 + 1.30i)22-s + (0.541 + 1.30i)24-s + (−0.707 − 0.707i)25-s + (−0.707 + 0.707i)32-s + 2·33-s + ⋯ |
Λ(s)=(=(2312s/2ΓC(s)L(s)(0.0340−0.999i)Λ(1−s)
Λ(s)=(=(2312s/2ΓC(s)L(s)(0.0340−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
2312
= 23⋅172
|
Sign: |
0.0340−0.999i
|
Analytic conductor: |
1.15383 |
Root analytic conductor: |
1.07416 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2312(179,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2312, ( :0), 0.0340−0.999i)
|
Particular Values
L(21) |
≈ |
0.01917871715 |
L(21) |
≈ |
0.01917871715 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.707+0.707i)T |
| 17 | 1 |
good | 3 | 1+(1.30+0.541i)T+(0.707+0.707i)T2 |
| 5 | 1+(0.707+0.707i)T2 |
| 7 | 1+(0.707−0.707i)T2 |
| 11 | 1+(1.30−0.541i)T+(0.707−0.707i)T2 |
| 13 | 1+T2 |
| 19 | 1+(1.41−1.41i)T−iT2 |
| 23 | 1+(−0.707+0.707i)T2 |
| 29 | 1+(0.707+0.707i)T2 |
| 31 | 1+(−0.707−0.707i)T2 |
| 37 | 1+(−0.707−0.707i)T2 |
| 41 | 1+(0.541+1.30i)T+(−0.707+0.707i)T2 |
| 43 | 1+iT2 |
| 47 | 1+T2 |
| 53 | 1+iT2 |
| 59 | 1+iT2 |
| 61 | 1+(0.707−0.707i)T2 |
| 67 | 1+T2 |
| 71 | 1+(−0.707−0.707i)T2 |
| 73 | 1+(0.541−1.30i)T+(−0.707−0.707i)T2 |
| 79 | 1+(−0.707+0.707i)T2 |
| 83 | 1−iT2 |
| 89 | 1−T2 |
| 97 | 1+(0.541−1.30i)T+(−0.707−0.707i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.582051775693450735431189984296, −7.66092736527158021305948694791, −6.73672510411999652078575039144, −6.02392477784236726347682157182, −5.48469666911059350348035552594, −4.69812673536794768578245813718, −3.84233502256158039328740147862, −2.49208525649374101695453126519, −1.62388067802965991236320491340, −0.01135336957170926200202113786,
2.43862206839291801959350529122, 3.50559486597387139909327336238, 4.67265521073079091434367388678, 4.95497736745412027062781900266, 5.85461392056205052551439665256, 6.35930399238639030035931046177, 7.23053804079752615670303589175, 8.112694572185609098480151016123, 8.823031235493531295420680526626, 9.883702062746596924560779573303