L(s) = 1 | + (0.707 − 0.707i)2-s + (−1.30 − 0.541i)3-s − 1.00i·4-s + (−1.30 + 0.541i)6-s + (−0.707 − 0.707i)8-s + (0.707 + 0.707i)9-s + (−1.30 + 0.541i)11-s + (−0.541 + 1.30i)12-s − 1.00·16-s + 1.00·18-s + (−1.41 + 1.41i)19-s + (−0.541 + 1.30i)22-s + (0.541 + 1.30i)24-s + (−0.707 − 0.707i)25-s + (−0.707 + 0.707i)32-s + 2·33-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)2-s + (−1.30 − 0.541i)3-s − 1.00i·4-s + (−1.30 + 0.541i)6-s + (−0.707 − 0.707i)8-s + (0.707 + 0.707i)9-s + (−1.30 + 0.541i)11-s + (−0.541 + 1.30i)12-s − 1.00·16-s + 1.00·18-s + (−1.41 + 1.41i)19-s + (−0.541 + 1.30i)22-s + (0.541 + 1.30i)24-s + (−0.707 − 0.707i)25-s + (−0.707 + 0.707i)32-s + 2·33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0340 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0340 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.01917871715\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.01917871715\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 17 | \( 1 \) |
good | 3 | \( 1 + (1.30 + 0.541i)T + (0.707 + 0.707i)T^{2} \) |
| 5 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 7 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (1.30 - 0.541i)T + (0.707 - 0.707i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 19 | \( 1 + (1.41 - 1.41i)T - iT^{2} \) |
| 23 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 29 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 31 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 37 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 41 | \( 1 + (0.541 + 1.30i)T + (-0.707 + 0.707i)T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 73 | \( 1 + (0.541 - 1.30i)T + (-0.707 - 0.707i)T^{2} \) |
| 79 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.541 - 1.30i)T + (-0.707 - 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.582051775693450735431189984296, −7.66092736527158021305948694791, −6.73672510411999652078575039144, −6.02392477784236726347682157182, −5.48469666911059350348035552594, −4.69812673536794768578245813718, −3.84233502256158039328740147862, −2.49208525649374101695453126519, −1.62388067802965991236320491340, −0.01135336957170926200202113786,
2.43862206839291801959350529122, 3.50559486597387139909327336238, 4.67265521073079091434367388678, 4.95497736745412027062781900266, 5.85461392056205052551439665256, 6.35930399238639030035931046177, 7.23053804079752615670303589175, 8.112694572185609098480151016123, 8.823031235493531295420680526626, 9.883702062746596924560779573303