Properties

Label 2312.1.f.b
Level $2312$
Weight $1$
Character orbit 2312.f
Self dual yes
Analytic conductor $1.154$
Analytic rank $0$
Dimension $2$
Projective image $D_{4}$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2312,1,Mod(579,2312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2312.579");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2312 = 2^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2312.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.15383830921\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 136)
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.0.314432.1
Artin image: $D_8$
Artin field: Galois closure of 8.2.210093400576.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - \beta q^{3} + q^{4} - \beta q^{6} + q^{8} + q^{9} + \beta q^{11} - \beta q^{12} + q^{16} + q^{18} - 2 q^{19} + \beta q^{22} - \beta q^{24} + q^{25} + q^{32} - 2 q^{33} + q^{36} - 2 q^{38} + \cdots + \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} + 2 q^{8} + 2 q^{9} + 2 q^{16} + 2 q^{18} - 4 q^{19} + 2 q^{25} + 2 q^{32} - 4 q^{33} + 2 q^{36} - 4 q^{38} + 2 q^{49} + 2 q^{50} + 2 q^{64} - 4 q^{66} + 2 q^{72} - 4 q^{76} - 2 q^{81}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2312\mathbb{Z}\right)^\times\).

\(n\) \(1157\) \(1735\) \(1737\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
579.1
1.41421
−1.41421
1.00000 −1.41421 1.00000 0 −1.41421 0 1.00000 1.00000 0
579.2 1.00000 1.41421 1.00000 0 1.41421 0 1.00000 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)
17.b even 2 1 inner
136.e odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2312.1.f.b 2
8.d odd 2 1 CM 2312.1.f.b 2
17.b even 2 1 inner 2312.1.f.b 2
17.c even 4 2 2312.1.e.a 2
17.d even 8 2 136.1.j.a 2
17.d even 8 2 2312.1.j.b 2
17.e odd 16 8 2312.1.p.e 8
51.g odd 8 2 1224.1.s.a 2
68.g odd 8 2 544.1.n.a 2
85.k odd 8 2 3400.1.bc.a 2
85.m even 8 2 3400.1.y.a 2
85.n odd 8 2 3400.1.bc.b 2
136.e odd 2 1 inner 2312.1.f.b 2
136.j odd 4 2 2312.1.e.a 2
136.o even 8 2 544.1.n.a 2
136.p odd 8 2 136.1.j.a 2
136.p odd 8 2 2312.1.j.b 2
136.s even 16 8 2312.1.p.e 8
408.bd even 8 2 1224.1.s.a 2
680.bq odd 8 2 3400.1.y.a 2
680.bw even 8 2 3400.1.bc.a 2
680.bz even 8 2 3400.1.bc.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
136.1.j.a 2 17.d even 8 2
136.1.j.a 2 136.p odd 8 2
544.1.n.a 2 68.g odd 8 2
544.1.n.a 2 136.o even 8 2
1224.1.s.a 2 51.g odd 8 2
1224.1.s.a 2 408.bd even 8 2
2312.1.e.a 2 17.c even 4 2
2312.1.e.a 2 136.j odd 4 2
2312.1.f.b 2 1.a even 1 1 trivial
2312.1.f.b 2 8.d odd 2 1 CM
2312.1.f.b 2 17.b even 2 1 inner
2312.1.f.b 2 136.e odd 2 1 inner
2312.1.j.b 2 17.d even 8 2
2312.1.j.b 2 136.p odd 8 2
2312.1.p.e 8 17.e odd 16 8
2312.1.p.e 8 136.s even 16 8
3400.1.y.a 2 85.m even 8 2
3400.1.y.a 2 680.bq odd 8 2
3400.1.bc.a 2 85.k odd 8 2
3400.1.bc.a 2 680.bw even 8 2
3400.1.bc.b 2 85.n odd 8 2
3400.1.bc.b 2 680.bz even 8 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 2 \) acting on \(S_{1}^{\mathrm{new}}(2312, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 2 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 2 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( (T + 2)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 2 \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 2 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 2 \) Copy content Toggle raw display
show more
show less