Properties

Label 2-234-1.1-c5-0-18
Degree $2$
Conductor $234$
Sign $-1$
Analytic cond. $37.5298$
Root an. cond. $6.12615$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 16·4-s + 51.9·5-s + 125.·7-s − 64·8-s − 207.·10-s − 727.·11-s + 169·13-s − 503.·14-s + 256·16-s − 1.75e3·17-s − 1.91e3·19-s + 830.·20-s + 2.90e3·22-s + 3.54e3·23-s − 428.·25-s − 676·26-s + 2.01e3·28-s − 4.86e3·29-s + 2.31e3·31-s − 1.02e3·32-s + 7.01e3·34-s + 6.53e3·35-s + 855.·37-s + 7.64e3·38-s − 3.32e3·40-s + 1.59e4·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 0.928·5-s + 0.971·7-s − 0.353·8-s − 0.656·10-s − 1.81·11-s + 0.277·13-s − 0.686·14-s + 0.250·16-s − 1.47·17-s − 1.21·19-s + 0.464·20-s + 1.28·22-s + 1.39·23-s − 0.137·25-s − 0.196·26-s + 0.485·28-s − 1.07·29-s + 0.432·31-s − 0.176·32-s + 1.04·34-s + 0.902·35-s + 0.102·37-s + 0.859·38-s − 0.328·40-s + 1.48·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(234\)    =    \(2 \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(37.5298\)
Root analytic conductor: \(6.12615\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 234,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
3 \( 1 \)
13 \( 1 - 169T \)
good5 \( 1 - 51.9T + 3.12e3T^{2} \)
7 \( 1 - 125.T + 1.68e4T^{2} \)
11 \( 1 + 727.T + 1.61e5T^{2} \)
17 \( 1 + 1.75e3T + 1.41e6T^{2} \)
19 \( 1 + 1.91e3T + 2.47e6T^{2} \)
23 \( 1 - 3.54e3T + 6.43e6T^{2} \)
29 \( 1 + 4.86e3T + 2.05e7T^{2} \)
31 \( 1 - 2.31e3T + 2.86e7T^{2} \)
37 \( 1 - 855.T + 6.93e7T^{2} \)
41 \( 1 - 1.59e4T + 1.15e8T^{2} \)
43 \( 1 + 1.82e4T + 1.47e8T^{2} \)
47 \( 1 + 2.54e4T + 2.29e8T^{2} \)
53 \( 1 - 6.92e3T + 4.18e8T^{2} \)
59 \( 1 - 2.82e4T + 7.14e8T^{2} \)
61 \( 1 - 1.70e4T + 8.44e8T^{2} \)
67 \( 1 + 6.13e4T + 1.35e9T^{2} \)
71 \( 1 - 3.47e4T + 1.80e9T^{2} \)
73 \( 1 + 5.14e4T + 2.07e9T^{2} \)
79 \( 1 - 1.02e3T + 3.07e9T^{2} \)
83 \( 1 + 1.17e5T + 3.93e9T^{2} \)
89 \( 1 + 2.44e4T + 5.58e9T^{2} \)
97 \( 1 - 3.23e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.83210992893769142493137773987, −9.906001270915681546609300347089, −8.775689139800608709658075136895, −8.065877480422518827358619720284, −6.89444137509146616852745549600, −5.69510265828470869796838823837, −4.68417151196206501694114695562, −2.60120610251849185115840731512, −1.73471197844421914850196786930, 0, 1.73471197844421914850196786930, 2.60120610251849185115840731512, 4.68417151196206501694114695562, 5.69510265828470869796838823837, 6.89444137509146616852745549600, 8.065877480422518827358619720284, 8.775689139800608709658075136895, 9.906001270915681546609300347089, 10.83210992893769142493137773987

Graph of the $Z$-function along the critical line