Properties

Label 234.6.a.i.1.2
Level $234$
Weight $6$
Character 234.1
Self dual yes
Analytic conductor $37.530$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [234,6,Mod(1,234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(234, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("234.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 234.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.5298138362\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3241}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 810 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 78)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-27.9649\) of defining polynomial
Character \(\chi\) \(=\) 234.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +16.0000 q^{4} +51.9298 q^{5} +125.930 q^{7} -64.0000 q^{8} -207.719 q^{10} -727.438 q^{11} +169.000 q^{13} -503.719 q^{14} +256.000 q^{16} -1752.60 q^{17} -1911.96 q^{19} +830.877 q^{20} +2909.75 q^{22} +3548.63 q^{23} -428.298 q^{25} -676.000 q^{26} +2014.88 q^{28} -4861.37 q^{29} +2315.68 q^{31} -1024.00 q^{32} +7010.38 q^{34} +6539.51 q^{35} +855.613 q^{37} +7647.85 q^{38} -3323.51 q^{40} +15940.1 q^{41} -18216.5 q^{43} -11639.0 q^{44} -14194.5 q^{46} -25491.2 q^{47} -948.690 q^{49} +1713.19 q^{50} +2704.00 q^{52} +6920.88 q^{53} -37775.7 q^{55} -8059.51 q^{56} +19445.5 q^{58} +28226.2 q^{59} +17085.5 q^{61} -9262.73 q^{62} +4096.00 q^{64} +8776.13 q^{65} -61370.4 q^{67} -28041.5 q^{68} -26158.0 q^{70} +34755.8 q^{71} -51413.4 q^{73} -3422.45 q^{74} -30591.4 q^{76} -91606.1 q^{77} +1024.40 q^{79} +13294.0 q^{80} -63760.5 q^{82} -117792. q^{83} -91011.9 q^{85} +72865.9 q^{86} +46556.0 q^{88} -24413.8 q^{89} +21282.1 q^{91} +56778.1 q^{92} +101965. q^{94} -99287.9 q^{95} +32393.1 q^{97} +3794.76 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 32 q^{4} - 10 q^{5} + 138 q^{7} - 128 q^{8} + 40 q^{10} - 544 q^{11} + 338 q^{13} - 552 q^{14} + 512 q^{16} - 1228 q^{17} - 522 q^{19} - 160 q^{20} + 2176 q^{22} + 1632 q^{23} + 282 q^{25}+ \cdots + 70440 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) 51.9298 0.928948 0.464474 0.885587i \(-0.346243\pi\)
0.464474 + 0.885587i \(0.346243\pi\)
\(6\) 0 0
\(7\) 125.930 0.971367 0.485684 0.874135i \(-0.338571\pi\)
0.485684 + 0.874135i \(0.338571\pi\)
\(8\) −64.0000 −0.353553
\(9\) 0 0
\(10\) −207.719 −0.656866
\(11\) −727.438 −1.81265 −0.906326 0.422579i \(-0.861125\pi\)
−0.906326 + 0.422579i \(0.861125\pi\)
\(12\) 0 0
\(13\) 169.000 0.277350
\(14\) −503.719 −0.686860
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) −1752.60 −1.47082 −0.735410 0.677623i \(-0.763010\pi\)
−0.735410 + 0.677623i \(0.763010\pi\)
\(18\) 0 0
\(19\) −1911.96 −1.21505 −0.607527 0.794299i \(-0.707838\pi\)
−0.607527 + 0.794299i \(0.707838\pi\)
\(20\) 830.877 0.464474
\(21\) 0 0
\(22\) 2909.75 1.28174
\(23\) 3548.63 1.39875 0.699377 0.714753i \(-0.253461\pi\)
0.699377 + 0.714753i \(0.253461\pi\)
\(24\) 0 0
\(25\) −428.298 −0.137055
\(26\) −676.000 −0.196116
\(27\) 0 0
\(28\) 2014.88 0.485684
\(29\) −4861.37 −1.07340 −0.536702 0.843772i \(-0.680330\pi\)
−0.536702 + 0.843772i \(0.680330\pi\)
\(30\) 0 0
\(31\) 2315.68 0.432788 0.216394 0.976306i \(-0.430570\pi\)
0.216394 + 0.976306i \(0.430570\pi\)
\(32\) −1024.00 −0.176777
\(33\) 0 0
\(34\) 7010.38 1.04003
\(35\) 6539.51 0.902350
\(36\) 0 0
\(37\) 855.613 0.102748 0.0513739 0.998679i \(-0.483640\pi\)
0.0513739 + 0.998679i \(0.483640\pi\)
\(38\) 7647.85 0.859173
\(39\) 0 0
\(40\) −3323.51 −0.328433
\(41\) 15940.1 1.48092 0.740461 0.672099i \(-0.234607\pi\)
0.740461 + 0.672099i \(0.234607\pi\)
\(42\) 0 0
\(43\) −18216.5 −1.50243 −0.751214 0.660059i \(-0.770531\pi\)
−0.751214 + 0.660059i \(0.770531\pi\)
\(44\) −11639.0 −0.906326
\(45\) 0 0
\(46\) −14194.5 −0.989068
\(47\) −25491.2 −1.68324 −0.841620 0.540071i \(-0.818397\pi\)
−0.841620 + 0.540071i \(0.818397\pi\)
\(48\) 0 0
\(49\) −948.690 −0.0564461
\(50\) 1713.19 0.0969127
\(51\) 0 0
\(52\) 2704.00 0.138675
\(53\) 6920.88 0.338432 0.169216 0.985579i \(-0.445876\pi\)
0.169216 + 0.985579i \(0.445876\pi\)
\(54\) 0 0
\(55\) −37775.7 −1.68386
\(56\) −8059.51 −0.343430
\(57\) 0 0
\(58\) 19445.5 0.759011
\(59\) 28226.2 1.05565 0.527827 0.849352i \(-0.323007\pi\)
0.527827 + 0.849352i \(0.323007\pi\)
\(60\) 0 0
\(61\) 17085.5 0.587899 0.293949 0.955821i \(-0.405030\pi\)
0.293949 + 0.955821i \(0.405030\pi\)
\(62\) −9262.73 −0.306027
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 8776.13 0.257644
\(66\) 0 0
\(67\) −61370.4 −1.67021 −0.835107 0.550088i \(-0.814594\pi\)
−0.835107 + 0.550088i \(0.814594\pi\)
\(68\) −28041.5 −0.735410
\(69\) 0 0
\(70\) −26158.0 −0.638058
\(71\) 34755.8 0.818242 0.409121 0.912480i \(-0.365835\pi\)
0.409121 + 0.912480i \(0.365835\pi\)
\(72\) 0 0
\(73\) −51413.4 −1.12919 −0.564597 0.825366i \(-0.690969\pi\)
−0.564597 + 0.825366i \(0.690969\pi\)
\(74\) −3422.45 −0.0726537
\(75\) 0 0
\(76\) −30591.4 −0.607527
\(77\) −91606.1 −1.76075
\(78\) 0 0
\(79\) 1024.40 0.0184672 0.00923359 0.999957i \(-0.497061\pi\)
0.00923359 + 0.999957i \(0.497061\pi\)
\(80\) 13294.0 0.232237
\(81\) 0 0
\(82\) −63760.5 −1.04717
\(83\) −117792. −1.87681 −0.938404 0.345541i \(-0.887695\pi\)
−0.938404 + 0.345541i \(0.887695\pi\)
\(84\) 0 0
\(85\) −91011.9 −1.36632
\(86\) 72865.9 1.06238
\(87\) 0 0
\(88\) 46556.0 0.640869
\(89\) −24413.8 −0.326708 −0.163354 0.986567i \(-0.552231\pi\)
−0.163354 + 0.986567i \(0.552231\pi\)
\(90\) 0 0
\(91\) 21282.1 0.269409
\(92\) 56778.1 0.699377
\(93\) 0 0
\(94\) 101965. 1.19023
\(95\) −99287.9 −1.12872
\(96\) 0 0
\(97\) 32393.1 0.349561 0.174780 0.984607i \(-0.444078\pi\)
0.174780 + 0.984607i \(0.444078\pi\)
\(98\) 3794.76 0.0399134
\(99\) 0 0
\(100\) −6852.77 −0.0685277
\(101\) −136702. −1.33343 −0.666714 0.745313i \(-0.732300\pi\)
−0.666714 + 0.745313i \(0.732300\pi\)
\(102\) 0 0
\(103\) 18853.6 0.175106 0.0875532 0.996160i \(-0.472095\pi\)
0.0875532 + 0.996160i \(0.472095\pi\)
\(104\) −10816.0 −0.0980581
\(105\) 0 0
\(106\) −27683.5 −0.239308
\(107\) −59464.2 −0.502107 −0.251054 0.967973i \(-0.580777\pi\)
−0.251054 + 0.967973i \(0.580777\pi\)
\(108\) 0 0
\(109\) −144082. −1.16157 −0.580783 0.814058i \(-0.697254\pi\)
−0.580783 + 0.814058i \(0.697254\pi\)
\(110\) 151103. 1.19067
\(111\) 0 0
\(112\) 32238.0 0.242842
\(113\) 163868. 1.20726 0.603628 0.797266i \(-0.293721\pi\)
0.603628 + 0.797266i \(0.293721\pi\)
\(114\) 0 0
\(115\) 184280. 1.29937
\(116\) −77781.8 −0.536702
\(117\) 0 0
\(118\) −112905. −0.746461
\(119\) −220704. −1.42871
\(120\) 0 0
\(121\) 368115. 2.28571
\(122\) −68341.9 −0.415707
\(123\) 0 0
\(124\) 37050.9 0.216394
\(125\) −184522. −1.05627
\(126\) 0 0
\(127\) 14594.3 0.0802921 0.0401461 0.999194i \(-0.487218\pi\)
0.0401461 + 0.999194i \(0.487218\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 0 0
\(130\) −35104.5 −0.182182
\(131\) 90631.6 0.461426 0.230713 0.973022i \(-0.425894\pi\)
0.230713 + 0.973022i \(0.425894\pi\)
\(132\) 0 0
\(133\) −240773. −1.18026
\(134\) 245482. 1.18102
\(135\) 0 0
\(136\) 112166. 0.520013
\(137\) 234615. 1.06796 0.533978 0.845498i \(-0.320696\pi\)
0.533978 + 0.845498i \(0.320696\pi\)
\(138\) 0 0
\(139\) 187258. 0.822061 0.411031 0.911622i \(-0.365169\pi\)
0.411031 + 0.911622i \(0.365169\pi\)
\(140\) 104632. 0.451175
\(141\) 0 0
\(142\) −139023. −0.578585
\(143\) −122937. −0.502739
\(144\) 0 0
\(145\) −252450. −0.997137
\(146\) 205653. 0.798461
\(147\) 0 0
\(148\) 13689.8 0.0513739
\(149\) 81845.0 0.302014 0.151007 0.988533i \(-0.451748\pi\)
0.151007 + 0.988533i \(0.451748\pi\)
\(150\) 0 0
\(151\) −436038. −1.55626 −0.778131 0.628103i \(-0.783832\pi\)
−0.778131 + 0.628103i \(0.783832\pi\)
\(152\) 122366. 0.429587
\(153\) 0 0
\(154\) 366425. 1.24504
\(155\) 120253. 0.402037
\(156\) 0 0
\(157\) −128820. −0.417094 −0.208547 0.978012i \(-0.566873\pi\)
−0.208547 + 0.978012i \(0.566873\pi\)
\(158\) −4097.59 −0.0130583
\(159\) 0 0
\(160\) −53176.1 −0.164216
\(161\) 446878. 1.35870
\(162\) 0 0
\(163\) 212197. 0.625562 0.312781 0.949825i \(-0.398739\pi\)
0.312781 + 0.949825i \(0.398739\pi\)
\(164\) 255042. 0.740461
\(165\) 0 0
\(166\) 471167. 1.32710
\(167\) 443647. 1.23097 0.615483 0.788150i \(-0.288961\pi\)
0.615483 + 0.788150i \(0.288961\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) 364048. 0.966131
\(171\) 0 0
\(172\) −291464. −0.751214
\(173\) −19751.6 −0.0501751 −0.0250875 0.999685i \(-0.507986\pi\)
−0.0250875 + 0.999685i \(0.507986\pi\)
\(174\) 0 0
\(175\) −53935.4 −0.133131
\(176\) −186224. −0.453163
\(177\) 0 0
\(178\) 97655.2 0.231018
\(179\) −470674. −1.09796 −0.548981 0.835835i \(-0.684984\pi\)
−0.548981 + 0.835835i \(0.684984\pi\)
\(180\) 0 0
\(181\) 253684. 0.575569 0.287784 0.957695i \(-0.407081\pi\)
0.287784 + 0.957695i \(0.407081\pi\)
\(182\) −85128.5 −0.190501
\(183\) 0 0
\(184\) −227112. −0.494534
\(185\) 44431.8 0.0954474
\(186\) 0 0
\(187\) 1.27491e6 2.66608
\(188\) −407859. −0.841620
\(189\) 0 0
\(190\) 397151. 0.798127
\(191\) −691969. −1.37247 −0.686236 0.727379i \(-0.740738\pi\)
−0.686236 + 0.727379i \(0.740738\pi\)
\(192\) 0 0
\(193\) −187938. −0.363180 −0.181590 0.983374i \(-0.558124\pi\)
−0.181590 + 0.983374i \(0.558124\pi\)
\(194\) −129572. −0.247177
\(195\) 0 0
\(196\) −15179.0 −0.0282231
\(197\) 392212. 0.720037 0.360019 0.932945i \(-0.382770\pi\)
0.360019 + 0.932945i \(0.382770\pi\)
\(198\) 0 0
\(199\) −143624. −0.257095 −0.128547 0.991703i \(-0.541031\pi\)
−0.128547 + 0.991703i \(0.541031\pi\)
\(200\) 27411.1 0.0484564
\(201\) 0 0
\(202\) 546806. 0.942877
\(203\) −612191. −1.04267
\(204\) 0 0
\(205\) 827768. 1.37570
\(206\) −75414.5 −0.123819
\(207\) 0 0
\(208\) 43264.0 0.0693375
\(209\) 1.39084e6 2.20247
\(210\) 0 0
\(211\) −663846. −1.02651 −0.513253 0.858238i \(-0.671560\pi\)
−0.513253 + 0.858238i \(0.671560\pi\)
\(212\) 110734. 0.169216
\(213\) 0 0
\(214\) 237857. 0.355043
\(215\) −945978. −1.39568
\(216\) 0 0
\(217\) 291613. 0.420396
\(218\) 576329. 0.821351
\(219\) 0 0
\(220\) −604411. −0.841930
\(221\) −296189. −0.407932
\(222\) 0 0
\(223\) 768220. 1.03448 0.517242 0.855839i \(-0.326959\pi\)
0.517242 + 0.855839i \(0.326959\pi\)
\(224\) −128952. −0.171715
\(225\) 0 0
\(226\) −655474. −0.853658
\(227\) 389973. 0.502308 0.251154 0.967947i \(-0.419190\pi\)
0.251154 + 0.967947i \(0.419190\pi\)
\(228\) 0 0
\(229\) −93168.7 −0.117404 −0.0587018 0.998276i \(-0.518696\pi\)
−0.0587018 + 0.998276i \(0.518696\pi\)
\(230\) −737118. −0.918793
\(231\) 0 0
\(232\) 311127. 0.379506
\(233\) −45435.7 −0.0548287 −0.0274143 0.999624i \(-0.508727\pi\)
−0.0274143 + 0.999624i \(0.508727\pi\)
\(234\) 0 0
\(235\) −1.32375e6 −1.56364
\(236\) 451619. 0.527827
\(237\) 0 0
\(238\) 882816. 1.01025
\(239\) −640583. −0.725405 −0.362703 0.931905i \(-0.618146\pi\)
−0.362703 + 0.931905i \(0.618146\pi\)
\(240\) 0 0
\(241\) −469774. −0.521010 −0.260505 0.965472i \(-0.583889\pi\)
−0.260505 + 0.965472i \(0.583889\pi\)
\(242\) −1.47246e6 −1.61624
\(243\) 0 0
\(244\) 273368. 0.293949
\(245\) −49265.3 −0.0524355
\(246\) 0 0
\(247\) −323122. −0.336995
\(248\) −148204. −0.153014
\(249\) 0 0
\(250\) 738088. 0.746892
\(251\) 382711. 0.383431 0.191715 0.981451i \(-0.438595\pi\)
0.191715 + 0.981451i \(0.438595\pi\)
\(252\) 0 0
\(253\) −2.58141e6 −2.53545
\(254\) −58377.1 −0.0567751
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) −132518. −0.125154 −0.0625768 0.998040i \(-0.519932\pi\)
−0.0625768 + 0.998040i \(0.519932\pi\)
\(258\) 0 0
\(259\) 107747. 0.0998059
\(260\) 140418. 0.128822
\(261\) 0 0
\(262\) −362527. −0.326277
\(263\) −1.30367e6 −1.16219 −0.581095 0.813836i \(-0.697375\pi\)
−0.581095 + 0.813836i \(0.697375\pi\)
\(264\) 0 0
\(265\) 359400. 0.314386
\(266\) 963093. 0.834572
\(267\) 0 0
\(268\) −981927. −0.835107
\(269\) −1.05757e6 −0.891105 −0.445553 0.895256i \(-0.646993\pi\)
−0.445553 + 0.895256i \(0.646993\pi\)
\(270\) 0 0
\(271\) 794875. 0.657470 0.328735 0.944422i \(-0.393378\pi\)
0.328735 + 0.944422i \(0.393378\pi\)
\(272\) −448664. −0.367705
\(273\) 0 0
\(274\) −938459. −0.755160
\(275\) 311560. 0.248434
\(276\) 0 0
\(277\) 898297. 0.703430 0.351715 0.936107i \(-0.385599\pi\)
0.351715 + 0.936107i \(0.385599\pi\)
\(278\) −749033. −0.581285
\(279\) 0 0
\(280\) −418528. −0.319029
\(281\) 711429. 0.537484 0.268742 0.963212i \(-0.413392\pi\)
0.268742 + 0.963212i \(0.413392\pi\)
\(282\) 0 0
\(283\) −2.42172e6 −1.79746 −0.898728 0.438506i \(-0.855508\pi\)
−0.898728 + 0.438506i \(0.855508\pi\)
\(284\) 556093. 0.409121
\(285\) 0 0
\(286\) 491748. 0.355490
\(287\) 2.00734e6 1.43852
\(288\) 0 0
\(289\) 1.65173e6 1.16331
\(290\) 1.00980e6 0.705082
\(291\) 0 0
\(292\) −822614. −0.564597
\(293\) 1.14948e6 0.782226 0.391113 0.920343i \(-0.372090\pi\)
0.391113 + 0.920343i \(0.372090\pi\)
\(294\) 0 0
\(295\) 1.46578e6 0.980648
\(296\) −54759.2 −0.0363269
\(297\) 0 0
\(298\) −327380. −0.213556
\(299\) 599718. 0.387944
\(300\) 0 0
\(301\) −2.29400e6 −1.45941
\(302\) 1.74415e6 1.10044
\(303\) 0 0
\(304\) −489463. −0.303764
\(305\) 887245. 0.546128
\(306\) 0 0
\(307\) −265112. −0.160540 −0.0802700 0.996773i \(-0.525578\pi\)
−0.0802700 + 0.996773i \(0.525578\pi\)
\(308\) −1.46570e6 −0.880375
\(309\) 0 0
\(310\) −481012. −0.284283
\(311\) −1.89541e6 −1.11122 −0.555612 0.831441i \(-0.687516\pi\)
−0.555612 + 0.831441i \(0.687516\pi\)
\(312\) 0 0
\(313\) −1.28051e6 −0.738791 −0.369395 0.929272i \(-0.620435\pi\)
−0.369395 + 0.929272i \(0.620435\pi\)
\(314\) 515280. 0.294930
\(315\) 0 0
\(316\) 16390.3 0.00923359
\(317\) 577699. 0.322889 0.161445 0.986882i \(-0.448385\pi\)
0.161445 + 0.986882i \(0.448385\pi\)
\(318\) 0 0
\(319\) 3.53634e6 1.94571
\(320\) 212704. 0.116119
\(321\) 0 0
\(322\) −1.78751e6 −0.960748
\(323\) 3.35090e6 1.78713
\(324\) 0 0
\(325\) −72382.3 −0.0380123
\(326\) −848788. −0.442339
\(327\) 0 0
\(328\) −1.02017e6 −0.523585
\(329\) −3.21010e6 −1.63504
\(330\) 0 0
\(331\) 50901.8 0.0255366 0.0127683 0.999918i \(-0.495936\pi\)
0.0127683 + 0.999918i \(0.495936\pi\)
\(332\) −1.88467e6 −0.938404
\(333\) 0 0
\(334\) −1.77459e6 −0.870425
\(335\) −3.18695e6 −1.55154
\(336\) 0 0
\(337\) −1.02644e6 −0.492333 −0.246166 0.969228i \(-0.579171\pi\)
−0.246166 + 0.969228i \(0.579171\pi\)
\(338\) −114244. −0.0543928
\(339\) 0 0
\(340\) −1.45619e6 −0.683158
\(341\) −1.68452e6 −0.784493
\(342\) 0 0
\(343\) −2.23597e6 −1.02620
\(344\) 1.16585e6 0.531188
\(345\) 0 0
\(346\) 79006.6 0.0354791
\(347\) −2.62322e6 −1.16953 −0.584764 0.811204i \(-0.698813\pi\)
−0.584764 + 0.811204i \(0.698813\pi\)
\(348\) 0 0
\(349\) −1.22375e6 −0.537811 −0.268906 0.963167i \(-0.586662\pi\)
−0.268906 + 0.963167i \(0.586662\pi\)
\(350\) 215742. 0.0941378
\(351\) 0 0
\(352\) 744897. 0.320435
\(353\) 4.01591e6 1.71533 0.857663 0.514211i \(-0.171915\pi\)
0.857663 + 0.514211i \(0.171915\pi\)
\(354\) 0 0
\(355\) 1.80486e6 0.760105
\(356\) −390621. −0.163354
\(357\) 0 0
\(358\) 1.88270e6 0.776377
\(359\) 3.39210e6 1.38910 0.694548 0.719446i \(-0.255604\pi\)
0.694548 + 0.719446i \(0.255604\pi\)
\(360\) 0 0
\(361\) 1.17951e6 0.476357
\(362\) −1.01474e6 −0.406989
\(363\) 0 0
\(364\) 340514. 0.134704
\(365\) −2.66988e6 −1.04896
\(366\) 0 0
\(367\) 2.09854e6 0.813302 0.406651 0.913584i \(-0.366697\pi\)
0.406651 + 0.913584i \(0.366697\pi\)
\(368\) 908449. 0.349688
\(369\) 0 0
\(370\) −177727. −0.0674915
\(371\) 871544. 0.328742
\(372\) 0 0
\(373\) 4.49072e6 1.67126 0.835629 0.549294i \(-0.185103\pi\)
0.835629 + 0.549294i \(0.185103\pi\)
\(374\) −5.09962e6 −1.88521
\(375\) 0 0
\(376\) 1.63144e6 0.595115
\(377\) −821571. −0.297709
\(378\) 0 0
\(379\) 4.18356e6 1.49606 0.748028 0.663667i \(-0.231001\pi\)
0.748028 + 0.663667i \(0.231001\pi\)
\(380\) −1.58861e6 −0.564361
\(381\) 0 0
\(382\) 2.76788e6 0.970484
\(383\) 4.16386e6 1.45044 0.725220 0.688517i \(-0.241738\pi\)
0.725220 + 0.688517i \(0.241738\pi\)
\(384\) 0 0
\(385\) −4.75709e6 −1.63565
\(386\) 751753. 0.256807
\(387\) 0 0
\(388\) 518289. 0.174780
\(389\) 2.82001e6 0.944880 0.472440 0.881363i \(-0.343373\pi\)
0.472440 + 0.881363i \(0.343373\pi\)
\(390\) 0 0
\(391\) −6.21931e6 −2.05731
\(392\) 60716.2 0.0199567
\(393\) 0 0
\(394\) −1.56885e6 −0.509143
\(395\) 53196.7 0.0171550
\(396\) 0 0
\(397\) 5.18346e6 1.65061 0.825304 0.564689i \(-0.191004\pi\)
0.825304 + 0.564689i \(0.191004\pi\)
\(398\) 574495. 0.181793
\(399\) 0 0
\(400\) −109644. −0.0342638
\(401\) −182869. −0.0567910 −0.0283955 0.999597i \(-0.509040\pi\)
−0.0283955 + 0.999597i \(0.509040\pi\)
\(402\) 0 0
\(403\) 391350. 0.120034
\(404\) −2.18722e6 −0.666714
\(405\) 0 0
\(406\) 2.44876e6 0.737279
\(407\) −622405. −0.186246
\(408\) 0 0
\(409\) 4.16750e6 1.23188 0.615938 0.787795i \(-0.288777\pi\)
0.615938 + 0.787795i \(0.288777\pi\)
\(410\) −3.31107e6 −0.972767
\(411\) 0 0
\(412\) 301658. 0.0875532
\(413\) 3.55451e6 1.02543
\(414\) 0 0
\(415\) −6.11690e6 −1.74346
\(416\) −173056. −0.0490290
\(417\) 0 0
\(418\) −5.56334e6 −1.55738
\(419\) −3.40253e6 −0.946819 −0.473409 0.880843i \(-0.656977\pi\)
−0.473409 + 0.880843i \(0.656977\pi\)
\(420\) 0 0
\(421\) 2.83837e6 0.780485 0.390242 0.920712i \(-0.372391\pi\)
0.390242 + 0.920712i \(0.372391\pi\)
\(422\) 2.65538e6 0.725849
\(423\) 0 0
\(424\) −442936. −0.119654
\(425\) 750633. 0.201584
\(426\) 0 0
\(427\) 2.15157e6 0.571066
\(428\) −951428. −0.251054
\(429\) 0 0
\(430\) 3.78391e6 0.986893
\(431\) 3.43537e6 0.890801 0.445400 0.895331i \(-0.353061\pi\)
0.445400 + 0.895331i \(0.353061\pi\)
\(432\) 0 0
\(433\) 5.38615e6 1.38057 0.690286 0.723537i \(-0.257485\pi\)
0.690286 + 0.723537i \(0.257485\pi\)
\(434\) −1.16645e6 −0.297265
\(435\) 0 0
\(436\) −2.30531e6 −0.580783
\(437\) −6.78485e6 −1.69956
\(438\) 0 0
\(439\) −2.76940e6 −0.685842 −0.342921 0.939364i \(-0.611416\pi\)
−0.342921 + 0.939364i \(0.611416\pi\)
\(440\) 2.41765e6 0.595334
\(441\) 0 0
\(442\) 1.18475e6 0.288451
\(443\) 292670. 0.0708548 0.0354274 0.999372i \(-0.488721\pi\)
0.0354274 + 0.999372i \(0.488721\pi\)
\(444\) 0 0
\(445\) −1.26780e6 −0.303495
\(446\) −3.07288e6 −0.731491
\(447\) 0 0
\(448\) 515808. 0.121421
\(449\) 3.99957e6 0.936263 0.468131 0.883659i \(-0.344927\pi\)
0.468131 + 0.883659i \(0.344927\pi\)
\(450\) 0 0
\(451\) −1.15955e7 −2.68440
\(452\) 2.62189e6 0.603628
\(453\) 0 0
\(454\) −1.55989e6 −0.355185
\(455\) 1.10518e6 0.250267
\(456\) 0 0
\(457\) 3.90828e6 0.875378 0.437689 0.899127i \(-0.355797\pi\)
0.437689 + 0.899127i \(0.355797\pi\)
\(458\) 372675. 0.0830169
\(459\) 0 0
\(460\) 2.94847e6 0.649685
\(461\) 6.76633e6 1.48286 0.741432 0.671028i \(-0.234147\pi\)
0.741432 + 0.671028i \(0.234147\pi\)
\(462\) 0 0
\(463\) −511273. −0.110841 −0.0554205 0.998463i \(-0.517650\pi\)
−0.0554205 + 0.998463i \(0.517650\pi\)
\(464\) −1.24451e6 −0.268351
\(465\) 0 0
\(466\) 181743. 0.0387697
\(467\) −8.36149e6 −1.77416 −0.887078 0.461620i \(-0.847268\pi\)
−0.887078 + 0.461620i \(0.847268\pi\)
\(468\) 0 0
\(469\) −7.72836e6 −1.62239
\(470\) 5.29501e6 1.10566
\(471\) 0 0
\(472\) −1.80647e6 −0.373230
\(473\) 1.32514e7 2.72338
\(474\) 0 0
\(475\) 818890. 0.166530
\(476\) −3.53126e6 −0.714353
\(477\) 0 0
\(478\) 2.56233e6 0.512939
\(479\) −9.08825e6 −1.80984 −0.904922 0.425576i \(-0.860071\pi\)
−0.904922 + 0.425576i \(0.860071\pi\)
\(480\) 0 0
\(481\) 144599. 0.0284971
\(482\) 1.87910e6 0.368410
\(483\) 0 0
\(484\) 5.88985e6 1.14285
\(485\) 1.68216e6 0.324724
\(486\) 0 0
\(487\) −248040. −0.0473913 −0.0236957 0.999719i \(-0.507543\pi\)
−0.0236957 + 0.999719i \(0.507543\pi\)
\(488\) −1.09347e6 −0.207854
\(489\) 0 0
\(490\) 197061. 0.0370775
\(491\) 2.76666e6 0.517908 0.258954 0.965890i \(-0.416622\pi\)
0.258954 + 0.965890i \(0.416622\pi\)
\(492\) 0 0
\(493\) 8.52001e6 1.57878
\(494\) 1.29249e6 0.238292
\(495\) 0 0
\(496\) 592815. 0.108197
\(497\) 4.37679e6 0.794813
\(498\) 0 0
\(499\) −3.50606e6 −0.630331 −0.315165 0.949037i \(-0.602060\pi\)
−0.315165 + 0.949037i \(0.602060\pi\)
\(500\) −2.95235e6 −0.528133
\(501\) 0 0
\(502\) −1.53084e6 −0.271126
\(503\) −4.73444e6 −0.834351 −0.417176 0.908826i \(-0.636980\pi\)
−0.417176 + 0.908826i \(0.636980\pi\)
\(504\) 0 0
\(505\) −7.09888e6 −1.23869
\(506\) 1.03256e7 1.79284
\(507\) 0 0
\(508\) 233508. 0.0401461
\(509\) −8.03933e6 −1.37539 −0.687694 0.726000i \(-0.741377\pi\)
−0.687694 + 0.726000i \(0.741377\pi\)
\(510\) 0 0
\(511\) −6.47447e6 −1.09686
\(512\) −262144. −0.0441942
\(513\) 0 0
\(514\) 530073. 0.0884969
\(515\) 979065. 0.162665
\(516\) 0 0
\(517\) 1.85433e7 3.05113
\(518\) −430988. −0.0705734
\(519\) 0 0
\(520\) −561673. −0.0910909
\(521\) 4.25006e6 0.685962 0.342981 0.939342i \(-0.388563\pi\)
0.342981 + 0.939342i \(0.388563\pi\)
\(522\) 0 0
\(523\) 9.27413e6 1.48258 0.741291 0.671184i \(-0.234214\pi\)
0.741291 + 0.671184i \(0.234214\pi\)
\(524\) 1.45011e6 0.230713
\(525\) 0 0
\(526\) 5.21466e6 0.821792
\(527\) −4.05846e6 −0.636553
\(528\) 0 0
\(529\) 6.15643e6 0.956510
\(530\) −1.43760e6 −0.222304
\(531\) 0 0
\(532\) −3.85237e6 −0.590132
\(533\) 2.69388e6 0.410734
\(534\) 0 0
\(535\) −3.08797e6 −0.466432
\(536\) 3.92771e6 0.590510
\(537\) 0 0
\(538\) 4.23029e6 0.630107
\(539\) 690114. 0.102317
\(540\) 0 0
\(541\) −2.04934e6 −0.301038 −0.150519 0.988607i \(-0.548094\pi\)
−0.150519 + 0.988607i \(0.548094\pi\)
\(542\) −3.17950e6 −0.464901
\(543\) 0 0
\(544\) 1.79466e6 0.260007
\(545\) −7.48216e6 −1.07903
\(546\) 0 0
\(547\) 8.79085e6 1.25621 0.628105 0.778128i \(-0.283831\pi\)
0.628105 + 0.778128i \(0.283831\pi\)
\(548\) 3.75383e6 0.533978
\(549\) 0 0
\(550\) −1.24624e6 −0.175669
\(551\) 9.29475e6 1.30424
\(552\) 0 0
\(553\) 129002. 0.0179384
\(554\) −3.59319e6 −0.497400
\(555\) 0 0
\(556\) 2.99613e6 0.411031
\(557\) −4.85096e6 −0.662506 −0.331253 0.943542i \(-0.607471\pi\)
−0.331253 + 0.943542i \(0.607471\pi\)
\(558\) 0 0
\(559\) −3.07859e6 −0.416698
\(560\) 1.67411e6 0.225587
\(561\) 0 0
\(562\) −2.84572e6 −0.380059
\(563\) 2.25029e6 0.299204 0.149602 0.988746i \(-0.452201\pi\)
0.149602 + 0.988746i \(0.452201\pi\)
\(564\) 0 0
\(565\) 8.50965e6 1.12148
\(566\) 9.68689e6 1.27099
\(567\) 0 0
\(568\) −2.22437e6 −0.289292
\(569\) 1.12398e6 0.145538 0.0727691 0.997349i \(-0.476816\pi\)
0.0727691 + 0.997349i \(0.476816\pi\)
\(570\) 0 0
\(571\) 1.22111e7 1.56735 0.783674 0.621172i \(-0.213343\pi\)
0.783674 + 0.621172i \(0.213343\pi\)
\(572\) −1.96699e6 −0.251370
\(573\) 0 0
\(574\) −8.02935e6 −1.01719
\(575\) −1.51987e6 −0.191707
\(576\) 0 0
\(577\) 4.65423e6 0.581981 0.290990 0.956726i \(-0.406015\pi\)
0.290990 + 0.956726i \(0.406015\pi\)
\(578\) −6.60694e6 −0.822585
\(579\) 0 0
\(580\) −4.03919e6 −0.498568
\(581\) −1.48335e7 −1.82307
\(582\) 0 0
\(583\) −5.03451e6 −0.613459
\(584\) 3.29046e6 0.399231
\(585\) 0 0
\(586\) −4.59792e6 −0.553117
\(587\) −6.71171e6 −0.803966 −0.401983 0.915647i \(-0.631679\pi\)
−0.401983 + 0.915647i \(0.631679\pi\)
\(588\) 0 0
\(589\) −4.42750e6 −0.525860
\(590\) −5.86311e6 −0.693423
\(591\) 0 0
\(592\) 219037. 0.0256870
\(593\) −9.19702e6 −1.07401 −0.537007 0.843578i \(-0.680445\pi\)
−0.537007 + 0.843578i \(0.680445\pi\)
\(594\) 0 0
\(595\) −1.14611e7 −1.32719
\(596\) 1.30952e6 0.151007
\(597\) 0 0
\(598\) −2.39887e6 −0.274318
\(599\) −3.75863e6 −0.428019 −0.214009 0.976832i \(-0.568652\pi\)
−0.214009 + 0.976832i \(0.568652\pi\)
\(600\) 0 0
\(601\) −1.03306e7 −1.16665 −0.583324 0.812240i \(-0.698248\pi\)
−0.583324 + 0.812240i \(0.698248\pi\)
\(602\) 9.17599e6 1.03196
\(603\) 0 0
\(604\) −6.97662e6 −0.778131
\(605\) 1.91162e7 2.12330
\(606\) 0 0
\(607\) −6.32243e6 −0.696486 −0.348243 0.937404i \(-0.613222\pi\)
−0.348243 + 0.937404i \(0.613222\pi\)
\(608\) 1.95785e6 0.214793
\(609\) 0 0
\(610\) −3.54898e6 −0.386171
\(611\) −4.30801e6 −0.466847
\(612\) 0 0
\(613\) 1.80304e7 1.93801 0.969003 0.247050i \(-0.0794611\pi\)
0.969003 + 0.247050i \(0.0794611\pi\)
\(614\) 1.06045e6 0.113519
\(615\) 0 0
\(616\) 5.86279e6 0.622519
\(617\) −3.30022e6 −0.349003 −0.174502 0.984657i \(-0.555831\pi\)
−0.174502 + 0.984657i \(0.555831\pi\)
\(618\) 0 0
\(619\) −1.48988e7 −1.56288 −0.781438 0.623982i \(-0.785514\pi\)
−0.781438 + 0.623982i \(0.785514\pi\)
\(620\) 1.92405e6 0.201019
\(621\) 0 0
\(622\) 7.58163e6 0.785755
\(623\) −3.07442e6 −0.317354
\(624\) 0 0
\(625\) −8.24376e6 −0.844161
\(626\) 5.12203e6 0.522404
\(627\) 0 0
\(628\) −2.06112e6 −0.208547
\(629\) −1.49954e6 −0.151124
\(630\) 0 0
\(631\) −1.35013e7 −1.34990 −0.674952 0.737862i \(-0.735836\pi\)
−0.674952 + 0.737862i \(0.735836\pi\)
\(632\) −65561.4 −0.00652913
\(633\) 0 0
\(634\) −2.31080e6 −0.228317
\(635\) 757877. 0.0745872
\(636\) 0 0
\(637\) −160329. −0.0156553
\(638\) −1.41454e7 −1.37582
\(639\) 0 0
\(640\) −850818. −0.0821082
\(641\) 5.57243e6 0.535672 0.267836 0.963464i \(-0.413691\pi\)
0.267836 + 0.963464i \(0.413691\pi\)
\(642\) 0 0
\(643\) 1.04401e7 0.995810 0.497905 0.867232i \(-0.334103\pi\)
0.497905 + 0.867232i \(0.334103\pi\)
\(644\) 7.15005e6 0.679351
\(645\) 0 0
\(646\) −1.34036e7 −1.26369
\(647\) −7.80548e6 −0.733059 −0.366529 0.930406i \(-0.619454\pi\)
−0.366529 + 0.930406i \(0.619454\pi\)
\(648\) 0 0
\(649\) −2.05328e7 −1.91353
\(650\) 289529. 0.0268788
\(651\) 0 0
\(652\) 3.39515e6 0.312781
\(653\) −1.41064e7 −1.29459 −0.647297 0.762238i \(-0.724101\pi\)
−0.647297 + 0.762238i \(0.724101\pi\)
\(654\) 0 0
\(655\) 4.70648e6 0.428640
\(656\) 4.08067e6 0.370231
\(657\) 0 0
\(658\) 1.28404e7 1.15615
\(659\) −1.60341e6 −0.143824 −0.0719121 0.997411i \(-0.522910\pi\)
−0.0719121 + 0.997411i \(0.522910\pi\)
\(660\) 0 0
\(661\) 1.09386e6 0.0973777 0.0486888 0.998814i \(-0.484496\pi\)
0.0486888 + 0.998814i \(0.484496\pi\)
\(662\) −203607. −0.0180571
\(663\) 0 0
\(664\) 7.53867e6 0.663552
\(665\) −1.25033e7 −1.09640
\(666\) 0 0
\(667\) −1.72512e7 −1.50143
\(668\) 7.09835e6 0.615483
\(669\) 0 0
\(670\) 1.27478e7 1.09711
\(671\) −1.24286e7 −1.06566
\(672\) 0 0
\(673\) −2.24267e7 −1.90866 −0.954330 0.298756i \(-0.903428\pi\)
−0.954330 + 0.298756i \(0.903428\pi\)
\(674\) 4.10576e6 0.348132
\(675\) 0 0
\(676\) 456976. 0.0384615
\(677\) 3.24049e6 0.271731 0.135866 0.990727i \(-0.456618\pi\)
0.135866 + 0.990727i \(0.456618\pi\)
\(678\) 0 0
\(679\) 4.07925e6 0.339552
\(680\) 5.82476e6 0.483065
\(681\) 0 0
\(682\) 6.73806e6 0.554721
\(683\) −7.98624e6 −0.655074 −0.327537 0.944838i \(-0.606219\pi\)
−0.327537 + 0.944838i \(0.606219\pi\)
\(684\) 0 0
\(685\) 1.21835e7 0.992077
\(686\) 8.94388e6 0.725631
\(687\) 0 0
\(688\) −4.66342e6 −0.375607
\(689\) 1.16963e6 0.0938641
\(690\) 0 0
\(691\) 6.65845e6 0.530491 0.265245 0.964181i \(-0.414547\pi\)
0.265245 + 0.964181i \(0.414547\pi\)
\(692\) −316026. −0.0250875
\(693\) 0 0
\(694\) 1.04929e7 0.826981
\(695\) 9.72428e6 0.763652
\(696\) 0 0
\(697\) −2.79366e7 −2.17817
\(698\) 4.89501e6 0.380290
\(699\) 0 0
\(700\) −862967. −0.0665655
\(701\) 1.32522e7 1.01858 0.509289 0.860596i \(-0.329909\pi\)
0.509289 + 0.860596i \(0.329909\pi\)
\(702\) 0 0
\(703\) −1.63590e6 −0.124844
\(704\) −2.97959e6 −0.226581
\(705\) 0 0
\(706\) −1.60636e7 −1.21292
\(707\) −1.72148e7 −1.29525
\(708\) 0 0
\(709\) −2.40403e7 −1.79607 −0.898035 0.439923i \(-0.855006\pi\)
−0.898035 + 0.439923i \(0.855006\pi\)
\(710\) −7.21945e6 −0.537475
\(711\) 0 0
\(712\) 1.56248e6 0.115509
\(713\) 8.21750e6 0.605363
\(714\) 0 0
\(715\) −6.38409e6 −0.467019
\(716\) −7.53078e6 −0.548981
\(717\) 0 0
\(718\) −1.35684e7 −0.982239
\(719\) −1.19668e7 −0.863287 −0.431643 0.902044i \(-0.642066\pi\)
−0.431643 + 0.902044i \(0.642066\pi\)
\(720\) 0 0
\(721\) 2.37423e6 0.170093
\(722\) −4.71802e6 −0.336835
\(723\) 0 0
\(724\) 4.05895e6 0.287784
\(725\) 2.08211e6 0.147116
\(726\) 0 0
\(727\) −9.20221e6 −0.645738 −0.322869 0.946444i \(-0.604647\pi\)
−0.322869 + 0.946444i \(0.604647\pi\)
\(728\) −1.36206e6 −0.0952504
\(729\) 0 0
\(730\) 1.06795e7 0.741729
\(731\) 3.19261e7 2.20980
\(732\) 0 0
\(733\) 1.07156e7 0.736640 0.368320 0.929699i \(-0.379933\pi\)
0.368320 + 0.929699i \(0.379933\pi\)
\(734\) −8.39415e6 −0.575091
\(735\) 0 0
\(736\) −3.63380e6 −0.247267
\(737\) 4.46432e7 3.02752
\(738\) 0 0
\(739\) 2.91758e7 1.96522 0.982610 0.185681i \(-0.0594490\pi\)
0.982610 + 0.185681i \(0.0594490\pi\)
\(740\) 710908. 0.0477237
\(741\) 0 0
\(742\) −3.48618e6 −0.232455
\(743\) −2.47758e7 −1.64648 −0.823238 0.567697i \(-0.807835\pi\)
−0.823238 + 0.567697i \(0.807835\pi\)
\(744\) 0 0
\(745\) 4.25019e6 0.280555
\(746\) −1.79629e7 −1.18176
\(747\) 0 0
\(748\) 2.03985e7 1.33304
\(749\) −7.48832e6 −0.487730
\(750\) 0 0
\(751\) 2.18230e7 1.41194 0.705968 0.708243i \(-0.250512\pi\)
0.705968 + 0.708243i \(0.250512\pi\)
\(752\) −6.52575e6 −0.420810
\(753\) 0 0
\(754\) 3.28628e6 0.210512
\(755\) −2.26434e7 −1.44569
\(756\) 0 0
\(757\) 2.80854e7 1.78132 0.890659 0.454672i \(-0.150244\pi\)
0.890659 + 0.454672i \(0.150244\pi\)
\(758\) −1.67342e7 −1.05787
\(759\) 0 0
\(760\) 6.35442e6 0.399064
\(761\) 1.95604e7 1.22438 0.612189 0.790711i \(-0.290289\pi\)
0.612189 + 0.790711i \(0.290289\pi\)
\(762\) 0 0
\(763\) −1.81442e7 −1.12831
\(764\) −1.10715e7 −0.686236
\(765\) 0 0
\(766\) −1.66555e7 −1.02562
\(767\) 4.77022e6 0.292786
\(768\) 0 0
\(769\) −2.29412e7 −1.39895 −0.699473 0.714659i \(-0.746582\pi\)
−0.699473 + 0.714659i \(0.746582\pi\)
\(770\) 1.90283e7 1.15658
\(771\) 0 0
\(772\) −3.00701e6 −0.181590
\(773\) −1.04250e7 −0.627522 −0.313761 0.949502i \(-0.601589\pi\)
−0.313761 + 0.949502i \(0.601589\pi\)
\(774\) 0 0
\(775\) −991802. −0.0593158
\(776\) −2.07316e6 −0.123588
\(777\) 0 0
\(778\) −1.12800e7 −0.668131
\(779\) −3.04770e7 −1.79940
\(780\) 0 0
\(781\) −2.52827e7 −1.48319
\(782\) 2.48773e7 1.45474
\(783\) 0 0
\(784\) −242865. −0.0141115
\(785\) −6.68960e6 −0.387459
\(786\) 0 0
\(787\) −2.62266e7 −1.50940 −0.754700 0.656070i \(-0.772218\pi\)
−0.754700 + 0.656070i \(0.772218\pi\)
\(788\) 6.27539e6 0.360019
\(789\) 0 0
\(790\) −212787. −0.0121304
\(791\) 2.06359e7 1.17269
\(792\) 0 0
\(793\) 2.88745e6 0.163054
\(794\) −2.07339e7 −1.16716
\(795\) 0 0
\(796\) −2.29798e6 −0.128547
\(797\) −6.62000e6 −0.369158 −0.184579 0.982818i \(-0.559092\pi\)
−0.184579 + 0.982818i \(0.559092\pi\)
\(798\) 0 0
\(799\) 4.46758e7 2.47574
\(800\) 438577. 0.0242282
\(801\) 0 0
\(802\) 731477. 0.0401573
\(803\) 3.74000e7 2.04684
\(804\) 0 0
\(805\) 2.32063e7 1.26216
\(806\) −1.56540e6 −0.0848766
\(807\) 0 0
\(808\) 8.74890e6 0.471438
\(809\) 3.20775e7 1.72317 0.861587 0.507610i \(-0.169471\pi\)
0.861587 + 0.507610i \(0.169471\pi\)
\(810\) 0 0
\(811\) 9.65080e6 0.515242 0.257621 0.966246i \(-0.417061\pi\)
0.257621 + 0.966246i \(0.417061\pi\)
\(812\) −9.79505e6 −0.521335
\(813\) 0 0
\(814\) 2.48962e6 0.131696
\(815\) 1.10193e7 0.581115
\(816\) 0 0
\(817\) 3.48293e7 1.82553
\(818\) −1.66700e7 −0.871068
\(819\) 0 0
\(820\) 1.32443e7 0.687850
\(821\) 4.08393e6 0.211456 0.105728 0.994395i \(-0.466283\pi\)
0.105728 + 0.994395i \(0.466283\pi\)
\(822\) 0 0
\(823\) 5.52729e6 0.284454 0.142227 0.989834i \(-0.454574\pi\)
0.142227 + 0.989834i \(0.454574\pi\)
\(824\) −1.20663e6 −0.0619095
\(825\) 0 0
\(826\) −1.42181e7 −0.725087
\(827\) −1.20691e7 −0.613636 −0.306818 0.951768i \(-0.599264\pi\)
−0.306818 + 0.951768i \(0.599264\pi\)
\(828\) 0 0
\(829\) −2.41656e7 −1.22127 −0.610634 0.791913i \(-0.709085\pi\)
−0.610634 + 0.791913i \(0.709085\pi\)
\(830\) 2.44676e7 1.23281
\(831\) 0 0
\(832\) 692224. 0.0346688
\(833\) 1.66267e6 0.0830221
\(834\) 0 0
\(835\) 2.30385e7 1.14350
\(836\) 2.22534e7 1.10124
\(837\) 0 0
\(838\) 1.36101e7 0.669502
\(839\) −5.77691e6 −0.283329 −0.141664 0.989915i \(-0.545245\pi\)
−0.141664 + 0.989915i \(0.545245\pi\)
\(840\) 0 0
\(841\) 3.12173e6 0.152197
\(842\) −1.13535e7 −0.551886
\(843\) 0 0
\(844\) −1.06215e7 −0.513253
\(845\) 1.48317e6 0.0714576
\(846\) 0 0
\(847\) 4.63567e7 2.22026
\(848\) 1.77174e6 0.0846080
\(849\) 0 0
\(850\) −3.00253e6 −0.142541
\(851\) 3.03625e6 0.143719
\(852\) 0 0
\(853\) −8.29724e6 −0.390446 −0.195223 0.980759i \(-0.562543\pi\)
−0.195223 + 0.980759i \(0.562543\pi\)
\(854\) −8.60628e6 −0.403804
\(855\) 0 0
\(856\) 3.80571e6 0.177522
\(857\) −3.30122e7 −1.53540 −0.767701 0.640808i \(-0.778599\pi\)
−0.767701 + 0.640808i \(0.778599\pi\)
\(858\) 0 0
\(859\) 3.20593e7 1.48242 0.741209 0.671274i \(-0.234253\pi\)
0.741209 + 0.671274i \(0.234253\pi\)
\(860\) −1.51356e7 −0.697838
\(861\) 0 0
\(862\) −1.37415e7 −0.629891
\(863\) 2.38586e7 1.09048 0.545241 0.838280i \(-0.316438\pi\)
0.545241 + 0.838280i \(0.316438\pi\)
\(864\) 0 0
\(865\) −1.02570e6 −0.0466101
\(866\) −2.15446e7 −0.976212
\(867\) 0 0
\(868\) 4.66581e6 0.210198
\(869\) −745185. −0.0334746
\(870\) 0 0
\(871\) −1.03716e7 −0.463234
\(872\) 9.22126e6 0.410676
\(873\) 0 0
\(874\) 2.71394e7 1.20177
\(875\) −2.32368e7 −1.02602
\(876\) 0 0
\(877\) 1.03330e7 0.453656 0.226828 0.973935i \(-0.427164\pi\)
0.226828 + 0.973935i \(0.427164\pi\)
\(878\) 1.10776e7 0.484964
\(879\) 0 0
\(880\) −9.67058e6 −0.420965
\(881\) −1.29653e7 −0.562785 −0.281393 0.959593i \(-0.590796\pi\)
−0.281393 + 0.959593i \(0.590796\pi\)
\(882\) 0 0
\(883\) −7.73789e6 −0.333980 −0.166990 0.985959i \(-0.553405\pi\)
−0.166990 + 0.985959i \(0.553405\pi\)
\(884\) −4.73902e6 −0.203966
\(885\) 0 0
\(886\) −1.17068e6 −0.0501019
\(887\) −2.42738e7 −1.03593 −0.517963 0.855403i \(-0.673310\pi\)
−0.517963 + 0.855403i \(0.673310\pi\)
\(888\) 0 0
\(889\) 1.83785e6 0.0779931
\(890\) 5.07121e6 0.214603
\(891\) 0 0
\(892\) 1.22915e7 0.517242
\(893\) 4.87383e7 2.04523
\(894\) 0 0
\(895\) −2.44420e7 −1.01995
\(896\) −2.06323e6 −0.0858575
\(897\) 0 0
\(898\) −1.59983e7 −0.662038
\(899\) −1.12574e7 −0.464556
\(900\) 0 0
\(901\) −1.21295e7 −0.497772
\(902\) 4.63818e7 1.89816
\(903\) 0 0
\(904\) −1.04876e7 −0.426829
\(905\) 1.31738e7 0.534674
\(906\) 0 0
\(907\) −8.52405e6 −0.344055 −0.172027 0.985092i \(-0.555032\pi\)
−0.172027 + 0.985092i \(0.555032\pi\)
\(908\) 6.23957e6 0.251154
\(909\) 0 0
\(910\) −4.42071e6 −0.176965
\(911\) 2.72544e7 1.08803 0.544014 0.839076i \(-0.316904\pi\)
0.544014 + 0.839076i \(0.316904\pi\)
\(912\) 0 0
\(913\) 8.56862e7 3.40200
\(914\) −1.56331e7 −0.618985
\(915\) 0 0
\(916\) −1.49070e6 −0.0587018
\(917\) 1.14132e7 0.448214
\(918\) 0 0
\(919\) −4.69088e7 −1.83217 −0.916085 0.400984i \(-0.868668\pi\)
−0.916085 + 0.400984i \(0.868668\pi\)
\(920\) −1.17939e7 −0.459396
\(921\) 0 0
\(922\) −2.70653e7 −1.04854
\(923\) 5.87374e6 0.226940
\(924\) 0 0
\(925\) −366457. −0.0140821
\(926\) 2.04509e6 0.0783764
\(927\) 0 0
\(928\) 4.97804e6 0.189753
\(929\) 1.49816e7 0.569533 0.284767 0.958597i \(-0.408084\pi\)
0.284767 + 0.958597i \(0.408084\pi\)
\(930\) 0 0
\(931\) 1.81386e6 0.0685851
\(932\) −726972. −0.0274143
\(933\) 0 0
\(934\) 3.34460e7 1.25452
\(935\) 6.62055e7 2.47665
\(936\) 0 0
\(937\) −1.62498e7 −0.604642 −0.302321 0.953206i \(-0.597761\pi\)
−0.302321 + 0.953206i \(0.597761\pi\)
\(938\) 3.09134e7 1.14720
\(939\) 0 0
\(940\) −2.11800e7 −0.781821
\(941\) 3.25833e7 1.19956 0.599778 0.800166i \(-0.295255\pi\)
0.599778 + 0.800166i \(0.295255\pi\)
\(942\) 0 0
\(943\) 5.65656e7 2.07144
\(944\) 7.22590e6 0.263914
\(945\) 0 0
\(946\) −5.30055e7 −1.92572
\(947\) −4.60715e6 −0.166939 −0.0834694 0.996510i \(-0.526600\pi\)
−0.0834694 + 0.996510i \(0.526600\pi\)
\(948\) 0 0
\(949\) −8.68886e6 −0.313182
\(950\) −3.27556e6 −0.117754
\(951\) 0 0
\(952\) 1.41251e7 0.505124
\(953\) 4.87957e7 1.74040 0.870200 0.492698i \(-0.163989\pi\)
0.870200 + 0.492698i \(0.163989\pi\)
\(954\) 0 0
\(955\) −3.59338e7 −1.27496
\(956\) −1.02493e7 −0.362703
\(957\) 0 0
\(958\) 3.63530e7 1.27975
\(959\) 2.95450e7 1.03738
\(960\) 0 0
\(961\) −2.32668e7 −0.812695
\(962\) −578394. −0.0201505
\(963\) 0 0
\(964\) −7.51638e6 −0.260505
\(965\) −9.75960e6 −0.337376
\(966\) 0 0
\(967\) −7.18367e6 −0.247047 −0.123524 0.992342i \(-0.539420\pi\)
−0.123524 + 0.992342i \(0.539420\pi\)
\(968\) −2.35594e7 −0.808119
\(969\) 0 0
\(970\) −6.72866e6 −0.229614
\(971\) −5.24904e7 −1.78662 −0.893308 0.449444i \(-0.851622\pi\)
−0.893308 + 0.449444i \(0.851622\pi\)
\(972\) 0 0
\(973\) 2.35814e7 0.798523
\(974\) 992159. 0.0335107
\(975\) 0 0
\(976\) 4.37388e6 0.146975
\(977\) 1.22428e6 0.0410340 0.0205170 0.999790i \(-0.493469\pi\)
0.0205170 + 0.999790i \(0.493469\pi\)
\(978\) 0 0
\(979\) 1.77595e7 0.592208
\(980\) −788244. −0.0262178
\(981\) 0 0
\(982\) −1.10666e7 −0.366216
\(983\) −3.28509e7 −1.08433 −0.542167 0.840271i \(-0.682396\pi\)
−0.542167 + 0.840271i \(0.682396\pi\)
\(984\) 0 0
\(985\) 2.03675e7 0.668877
\(986\) −3.40800e7 −1.11637
\(987\) 0 0
\(988\) −5.16995e6 −0.168498
\(989\) −6.46436e7 −2.10152
\(990\) 0 0
\(991\) −1.02297e6 −0.0330885 −0.0165443 0.999863i \(-0.505266\pi\)
−0.0165443 + 0.999863i \(0.505266\pi\)
\(992\) −2.37126e6 −0.0765068
\(993\) 0 0
\(994\) −1.75072e7 −0.562018
\(995\) −7.45835e6 −0.238828
\(996\) 0 0
\(997\) −6.44797e6 −0.205440 −0.102720 0.994710i \(-0.532755\pi\)
−0.102720 + 0.994710i \(0.532755\pi\)
\(998\) 1.40243e7 0.445711
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 234.6.a.i.1.2 2
3.2 odd 2 78.6.a.h.1.1 2
12.11 even 2 624.6.a.j.1.1 2
39.38 odd 2 1014.6.a.i.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.6.a.h.1.1 2 3.2 odd 2
234.6.a.i.1.2 2 1.1 even 1 trivial
624.6.a.j.1.1 2 12.11 even 2
1014.6.a.i.1.2 2 39.38 odd 2