Properties

Label 4-2352e2-1.1-c3e2-0-3
Degree $4$
Conductor $5531904$
Sign $1$
Analytic cond. $19257.8$
Root an. cond. $11.7801$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·3-s + 18·5-s + 27·9-s − 58·11-s + 48·13-s + 108·15-s − 6·17-s − 84·19-s − 6·23-s + 130·25-s + 108·27-s − 104·29-s − 252·31-s − 348·33-s + 224·37-s + 288·39-s + 438·41-s + 776·43-s + 486·45-s + 240·47-s − 36·51-s + 1.08e3·53-s − 1.04e3·55-s − 504·57-s − 312·59-s − 660·61-s + 864·65-s + ⋯
L(s)  = 1  + 1.15·3-s + 1.60·5-s + 9-s − 1.58·11-s + 1.02·13-s + 1.85·15-s − 0.0856·17-s − 1.01·19-s − 0.0543·23-s + 1.03·25-s + 0.769·27-s − 0.665·29-s − 1.46·31-s − 1.83·33-s + 0.995·37-s + 1.18·39-s + 1.66·41-s + 2.75·43-s + 1.60·45-s + 0.744·47-s − 0.0988·51-s + 2.79·53-s − 2.55·55-s − 1.17·57-s − 0.688·59-s − 1.38·61-s + 1.64·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5531904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5531904 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(5531904\)    =    \(2^{8} \cdot 3^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(19257.8\)
Root analytic conductor: \(11.7801\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 5531904,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(9.528866900\)
\(L(\frac12)\) \(\approx\) \(9.528866900\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 - p T )^{2} \)
7 \( 1 \)
good5$D_{4}$ \( 1 - 18 T + 194 T^{2} - 18 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 + 58 T + 2270 T^{2} + 58 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 - 48 T + 2778 T^{2} - 48 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 6 T + 9698 T^{2} + 6 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 + 84 T + 1782 T^{2} + 84 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 + 6 T - 6482 T^{2} + 6 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 104 T + 46550 T^{2} + 104 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 + 252 T + 74910 T^{2} + 252 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 - 224 T + 108918 T^{2} - 224 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 - 438 T + 113330 T^{2} - 438 p^{3} T^{3} + p^{6} T^{4} \)
43$C_2$ \( ( 1 - 388 T + p^{3} T^{2} )^{2} \)
47$D_{4}$ \( 1 - 240 T + 81758 T^{2} - 240 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 - 1080 T + 584422 T^{2} - 1080 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 + 312 T + 400022 T^{2} + 312 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 + 660 T + 496554 T^{2} + 660 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 - 396 T + 399062 T^{2} - 396 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 + 66 T + 360574 T^{2} + 66 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 - 972 T + 969842 T^{2} - 972 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 - 860 T + 1126590 T^{2} - 860 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 + 2520 T + 2696102 T^{2} + 2520 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 - 1686 T + 2089762 T^{2} - 1686 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 - 2100 T + 2861538 T^{2} - 2100 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.881560446797156079801966532266, −8.738318990353735905656298600727, −7.890041417232435301536605048108, −7.81760025074929072264370962100, −7.31418063749322186238240207856, −7.16227694857730987845636546178, −6.27277263517035863369481384508, −6.05603364659633114838427010099, −5.72925217858204932895743878178, −5.53851373381353917707128931939, −4.72782190794944936840532925800, −4.50015044359038879456892995088, −3.74744236762429062186722687686, −3.65791206011254822425809517630, −2.77009233555504317668401669513, −2.50330456549303052910764198076, −2.02388374931356693390135508734, −1.97624827628271108411789854150, −0.947769038879111320623033531694, −0.60978641799910065497085969334, 0.60978641799910065497085969334, 0.947769038879111320623033531694, 1.97624827628271108411789854150, 2.02388374931356693390135508734, 2.50330456549303052910764198076, 2.77009233555504317668401669513, 3.65791206011254822425809517630, 3.74744236762429062186722687686, 4.50015044359038879456892995088, 4.72782190794944936840532925800, 5.53851373381353917707128931939, 5.72925217858204932895743878178, 6.05603364659633114838427010099, 6.27277263517035863369481384508, 7.16227694857730987845636546178, 7.31418063749322186238240207856, 7.81760025074929072264370962100, 7.890041417232435301536605048108, 8.738318990353735905656298600727, 8.881560446797156079801966532266

Graph of the $Z$-function along the critical line