L(s) = 1 | + 6·3-s + 18·5-s + 27·9-s − 58·11-s + 48·13-s + 108·15-s − 6·17-s − 84·19-s − 6·23-s + 130·25-s + 108·27-s − 104·29-s − 252·31-s − 348·33-s + 224·37-s + 288·39-s + 438·41-s + 776·43-s + 486·45-s + 240·47-s − 36·51-s + 1.08e3·53-s − 1.04e3·55-s − 504·57-s − 312·59-s − 660·61-s + 864·65-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 1.60·5-s + 9-s − 1.58·11-s + 1.02·13-s + 1.85·15-s − 0.0856·17-s − 1.01·19-s − 0.0543·23-s + 1.03·25-s + 0.769·27-s − 0.665·29-s − 1.46·31-s − 1.83·33-s + 0.995·37-s + 1.18·39-s + 1.66·41-s + 2.75·43-s + 1.60·45-s + 0.744·47-s − 0.0988·51-s + 2.79·53-s − 2.55·55-s − 1.17·57-s − 0.688·59-s − 1.38·61-s + 1.64·65-s + ⋯ |
Λ(s)=(=(5531904s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(5531904s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
5531904
= 28⋅32⋅74
|
Sign: |
1
|
Analytic conductor: |
19257.8 |
Root analytic conductor: |
11.7801 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 5531904, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
9.528866900 |
L(21) |
≈ |
9.528866900 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1−pT)2 |
| 7 | | 1 |
good | 5 | D4 | 1−18T+194T2−18p3T3+p6T4 |
| 11 | D4 | 1+58T+2270T2+58p3T3+p6T4 |
| 13 | D4 | 1−48T+2778T2−48p3T3+p6T4 |
| 17 | D4 | 1+6T+9698T2+6p3T3+p6T4 |
| 19 | D4 | 1+84T+1782T2+84p3T3+p6T4 |
| 23 | D4 | 1+6T−6482T2+6p3T3+p6T4 |
| 29 | D4 | 1+104T+46550T2+104p3T3+p6T4 |
| 31 | D4 | 1+252T+74910T2+252p3T3+p6T4 |
| 37 | D4 | 1−224T+108918T2−224p3T3+p6T4 |
| 41 | D4 | 1−438T+113330T2−438p3T3+p6T4 |
| 43 | C2 | (1−388T+p3T2)2 |
| 47 | D4 | 1−240T+81758T2−240p3T3+p6T4 |
| 53 | D4 | 1−1080T+584422T2−1080p3T3+p6T4 |
| 59 | D4 | 1+312T+400022T2+312p3T3+p6T4 |
| 61 | D4 | 1+660T+496554T2+660p3T3+p6T4 |
| 67 | D4 | 1−396T+399062T2−396p3T3+p6T4 |
| 71 | D4 | 1+66T+360574T2+66p3T3+p6T4 |
| 73 | D4 | 1−972T+969842T2−972p3T3+p6T4 |
| 79 | D4 | 1−860T+1126590T2−860p3T3+p6T4 |
| 83 | D4 | 1+2520T+2696102T2+2520p3T3+p6T4 |
| 89 | D4 | 1−1686T+2089762T2−1686p3T3+p6T4 |
| 97 | D4 | 1−2100T+2861538T2−2100p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.881560446797156079801966532266, −8.738318990353735905656298600727, −7.890041417232435301536605048108, −7.81760025074929072264370962100, −7.31418063749322186238240207856, −7.16227694857730987845636546178, −6.27277263517035863369481384508, −6.05603364659633114838427010099, −5.72925217858204932895743878178, −5.53851373381353917707128931939, −4.72782190794944936840532925800, −4.50015044359038879456892995088, −3.74744236762429062186722687686, −3.65791206011254822425809517630, −2.77009233555504317668401669513, −2.50330456549303052910764198076, −2.02388374931356693390135508734, −1.97624827628271108411789854150, −0.947769038879111320623033531694, −0.60978641799910065497085969334,
0.60978641799910065497085969334, 0.947769038879111320623033531694, 1.97624827628271108411789854150, 2.02388374931356693390135508734, 2.50330456549303052910764198076, 2.77009233555504317668401669513, 3.65791206011254822425809517630, 3.74744236762429062186722687686, 4.50015044359038879456892995088, 4.72782190794944936840532925800, 5.53851373381353917707128931939, 5.72925217858204932895743878178, 6.05603364659633114838427010099, 6.27277263517035863369481384508, 7.16227694857730987845636546178, 7.31418063749322186238240207856, 7.81760025074929072264370962100, 7.890041417232435301536605048108, 8.738318990353735905656298600727, 8.881560446797156079801966532266