Properties

Label 2352.4.a.ce
Level 23522352
Weight 44
Character orbit 2352.a
Self dual yes
Analytic conductor 138.772138.772
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2352,4,Mod(1,2352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2352, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2352.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 2352=24372 2352 = 2^{4} \cdot 3 \cdot 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 2352.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 138.772492334138.772492334
Analytic rank: 00
Dimension: 22
Coefficient field: Q(137)\Q(\sqrt{137})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x34 x^{2} - x - 34 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 1176)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=137\beta = \sqrt{137}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+3q3+(β+9)q5+9q9+(3β29)q11+(4β+24)q13+(3β+27)q15+(β3)q17+(10β42)q19+(15β3)q23+(18β+93)q25++(27β261)q99+O(q100) q + 3 q^{3} + ( - \beta + 9) q^{5} + 9 q^{9} + ( - 3 \beta - 29) q^{11} + (4 \beta + 24) q^{13} + ( - 3 \beta + 27) q^{15} + ( - \beta - 3) q^{17} + ( - 10 \beta - 42) q^{19} + (15 \beta - 3) q^{23} + ( - 18 \beta + 93) q^{25}+ \cdots + ( - 27 \beta - 261) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+6q3+18q5+18q958q11+48q13+54q156q1784q196q23+186q25+54q27104q29252q31174q33+224q37+144q39+438q41+522q99+O(q100) 2 q + 6 q^{3} + 18 q^{5} + 18 q^{9} - 58 q^{11} + 48 q^{13} + 54 q^{15} - 6 q^{17} - 84 q^{19} - 6 q^{23} + 186 q^{25} + 54 q^{27} - 104 q^{29} - 252 q^{31} - 174 q^{33} + 224 q^{37} + 144 q^{39} + 438 q^{41}+ \cdots - 522 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
6.35235
−5.35235
0 3.00000 0 −2.70470 0 0 0 9.00000 0
1.2 0 3.00000 0 20.7047 0 0 0 9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 1 -1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2352.4.a.ce 2
4.b odd 2 1 1176.4.a.s 2
7.b odd 2 1 2352.4.a.bm 2
28.d even 2 1 1176.4.a.t yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1176.4.a.s 2 4.b odd 2 1
1176.4.a.t yes 2 28.d even 2 1
2352.4.a.bm 2 7.b odd 2 1
2352.4.a.ce 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(2352))S_{4}^{\mathrm{new}}(\Gamma_0(2352)):

T5218T556 T_{5}^{2} - 18T_{5} - 56 Copy content Toggle raw display
T112+58T11392 T_{11}^{2} + 58T_{11} - 392 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 (T3)2 (T - 3)^{2} Copy content Toggle raw display
55 T218T56 T^{2} - 18T - 56 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2+58T392 T^{2} + 58T - 392 Copy content Toggle raw display
1313 T248T1616 T^{2} - 48T - 1616 Copy content Toggle raw display
1717 T2+6T128 T^{2} + 6T - 128 Copy content Toggle raw display
1919 T2+84T11936 T^{2} + 84T - 11936 Copy content Toggle raw display
2323 T2+6T30816 T^{2} + 6T - 30816 Copy content Toggle raw display
2929 T2+104T2228 T^{2} + 104T - 2228 Copy content Toggle raw display
3131 T2+252T+15328 T^{2} + 252T + 15328 Copy content Toggle raw display
3737 T2224T+7612 T^{2} - 224T + 7612 Copy content Toggle raw display
4141 T2438T24512 T^{2} - 438T - 24512 Copy content Toggle raw display
4343 (T388)2 (T - 388)^{2} Copy content Toggle raw display
4747 T2240T125888 T^{2} - 240T - 125888 Copy content Toggle raw display
5353 T21080T+286668 T^{2} - 1080 T + 286668 Copy content Toggle raw display
5959 T2+312T10736 T^{2} + 312T - 10736 Copy content Toggle raw display
6161 T2+660T+42592 T^{2} + 660T + 42592 Copy content Toggle raw display
6767 T2396T202464 T^{2} - 396T - 202464 Copy content Toggle raw display
7171 T2+66T355248 T^{2} + 66T - 355248 Copy content Toggle raw display
7373 T2972T+191808 T^{2} - 972T + 191808 Copy content Toggle raw display
7979 T2860T+140512 T^{2} - 860T + 140512 Copy content Toggle raw display
8383 T2+2520T+1552528 T^{2} + 2520 T + 1552528 Copy content Toggle raw display
8989 T21686T+679824 T^{2} - 1686 T + 679824 Copy content Toggle raw display
9797 T22100T+1036192 T^{2} - 2100 T + 1036192 Copy content Toggle raw display
show more
show less