Properties

Label 2352.4.a.ce
Level $2352$
Weight $4$
Character orbit 2352.a
Self dual yes
Analytic conductor $138.772$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2352,4,Mod(1,2352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2352, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2352.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2352.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(138.772492334\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{137}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 34 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1176)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{137}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 q^{3} + ( - \beta + 9) q^{5} + 9 q^{9} + ( - 3 \beta - 29) q^{11} + (4 \beta + 24) q^{13} + ( - 3 \beta + 27) q^{15} + ( - \beta - 3) q^{17} + ( - 10 \beta - 42) q^{19} + (15 \beta - 3) q^{23} + ( - 18 \beta + 93) q^{25}+ \cdots + ( - 27 \beta - 261) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} + 18 q^{5} + 18 q^{9} - 58 q^{11} + 48 q^{13} + 54 q^{15} - 6 q^{17} - 84 q^{19} - 6 q^{23} + 186 q^{25} + 54 q^{27} - 104 q^{29} - 252 q^{31} - 174 q^{33} + 224 q^{37} + 144 q^{39} + 438 q^{41}+ \cdots - 522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
6.35235
−5.35235
0 3.00000 0 −2.70470 0 0 0 9.00000 0
1.2 0 3.00000 0 20.7047 0 0 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2352.4.a.ce 2
4.b odd 2 1 1176.4.a.s 2
7.b odd 2 1 2352.4.a.bm 2
28.d even 2 1 1176.4.a.t yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1176.4.a.s 2 4.b odd 2 1
1176.4.a.t yes 2 28.d even 2 1
2352.4.a.bm 2 7.b odd 2 1
2352.4.a.ce 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2352))\):

\( T_{5}^{2} - 18T_{5} - 56 \) Copy content Toggle raw display
\( T_{11}^{2} + 58T_{11} - 392 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 18T - 56 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 58T - 392 \) Copy content Toggle raw display
$13$ \( T^{2} - 48T - 1616 \) Copy content Toggle raw display
$17$ \( T^{2} + 6T - 128 \) Copy content Toggle raw display
$19$ \( T^{2} + 84T - 11936 \) Copy content Toggle raw display
$23$ \( T^{2} + 6T - 30816 \) Copy content Toggle raw display
$29$ \( T^{2} + 104T - 2228 \) Copy content Toggle raw display
$31$ \( T^{2} + 252T + 15328 \) Copy content Toggle raw display
$37$ \( T^{2} - 224T + 7612 \) Copy content Toggle raw display
$41$ \( T^{2} - 438T - 24512 \) Copy content Toggle raw display
$43$ \( (T - 388)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 240T - 125888 \) Copy content Toggle raw display
$53$ \( T^{2} - 1080 T + 286668 \) Copy content Toggle raw display
$59$ \( T^{2} + 312T - 10736 \) Copy content Toggle raw display
$61$ \( T^{2} + 660T + 42592 \) Copy content Toggle raw display
$67$ \( T^{2} - 396T - 202464 \) Copy content Toggle raw display
$71$ \( T^{2} + 66T - 355248 \) Copy content Toggle raw display
$73$ \( T^{2} - 972T + 191808 \) Copy content Toggle raw display
$79$ \( T^{2} - 860T + 140512 \) Copy content Toggle raw display
$83$ \( T^{2} + 2520 T + 1552528 \) Copy content Toggle raw display
$89$ \( T^{2} - 1686 T + 679824 \) Copy content Toggle raw display
$97$ \( T^{2} - 2100 T + 1036192 \) Copy content Toggle raw display
show more
show less