L(s) = 1 | + (−0.707 + 0.707i)2-s + (0.707 − 0.707i)3-s − 1.00i·4-s + (−0.707 − 0.707i)5-s + 1.00i·6-s + (0.707 + 0.707i)8-s − 1.00i·9-s + 1.00·10-s + (−0.707 − 0.707i)12-s − 1.00·15-s − 1.00·16-s + 1.41·17-s + (0.707 + 0.707i)18-s + (−1 + i)19-s + (−0.707 + 0.707i)20-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s + (0.707 − 0.707i)3-s − 1.00i·4-s + (−0.707 − 0.707i)5-s + 1.00i·6-s + (0.707 + 0.707i)8-s − 1.00i·9-s + 1.00·10-s + (−0.707 − 0.707i)12-s − 1.00·15-s − 1.00·16-s + 1.41·17-s + (0.707 + 0.707i)18-s + (−1 + i)19-s + (−0.707 + 0.707i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.923 + 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.923 + 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5917809861\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5917809861\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 5 | \( 1 + (0.707 + 0.707i)T \) |
good | 7 | \( 1 + T^{2} \) |
| 11 | \( 1 - iT^{2} \) |
| 13 | \( 1 + iT^{2} \) |
| 17 | \( 1 - 1.41T + T^{2} \) |
| 19 | \( 1 + (1 - i)T - iT^{2} \) |
| 23 | \( 1 - 1.41iT - T^{2} \) |
| 29 | \( 1 + iT^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + 1.41T + T^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 - iT^{2} \) |
| 61 | \( 1 + (-1 + i)T - iT^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - 2T + T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.36936163496750345326236536554, −11.42609557929333522777040228548, −9.987440746581778878235120595066, −9.152244553984701345408037980079, −8.043005708260171471716271182966, −7.80746578592877739633446267261, −6.52446969123786007095903519098, −5.31144419502214469638598438828, −3.67167826288751907376634774032, −1.51939273448247247661441585868,
2.53553620062341549250040701672, 3.53036680717894158420722420130, 4.62319019308263877060332591515, 6.77479150238894859714644007434, 7.909413203481590687250027947400, 8.542877462261970093053789337113, 9.682864892071757417871083182559, 10.49354232776174795576261236325, 11.14349063871715647995098067786, 12.19935326316781195879732182893