Properties

Label 240.1.bm.a
Level 240240
Weight 11
Character orbit 240.bm
Analytic conductor 0.1200.120
Analytic rank 00
Dimension 44
Projective image D4D_{4}
CM discriminant -15
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [240,1,Mod(29,240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(240, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 2, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("240.29");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 240=2435 240 = 2^{4} \cdot 3 \cdot 5
Weight: k k == 1 1
Character orbit: [χ][\chi] == 240.bm (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.1197756030320.119775603032
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(i)\Q(i)
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D4D_{4}
Projective field: Galois closure of 4.0.92160.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ8q2+ζ8q3+ζ82q4+ζ83q5ζ82q6ζ83q8+ζ82q9+q10+ζ83q12q15q16++ζ8q98+O(q100) q - \zeta_{8} q^{2} + \zeta_{8} q^{3} + \zeta_{8}^{2} q^{4} + \zeta_{8}^{3} q^{5} - \zeta_{8}^{2} q^{6} - \zeta_{8}^{3} q^{8} + \zeta_{8}^{2} q^{9} + q^{10} + \zeta_{8}^{3} q^{12} - q^{15} - q^{16} + \cdots + \zeta_{8} q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q104q154q164q19+4q244q344q364q464q49+4q51+4q54+4q61+4q69+4q76+8q794q814q85+4q94+O(q100) 4 q + 4 q^{10} - 4 q^{15} - 4 q^{16} - 4 q^{19} + 4 q^{24} - 4 q^{34} - 4 q^{36} - 4 q^{46} - 4 q^{49} + 4 q^{51} + 4 q^{54} + 4 q^{61} + 4 q^{69} + 4 q^{76} + 8 q^{79} - 4 q^{81} - 4 q^{85} + 4 q^{94}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/240Z)×\left(\mathbb{Z}/240\mathbb{Z}\right)^\times.

nn 3131 9797 161161 181181
χ(n)\chi(n) 11 1-1 1-1 ζ82-\zeta_{8}^{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
29.1
0.707107 + 0.707107i
−0.707107 0.707107i
0.707107 0.707107i
−0.707107 + 0.707107i
−0.707107 0.707107i 0.707107 + 0.707107i 1.00000i −0.707107 + 0.707107i 1.00000i 0 0.707107 0.707107i 1.00000i 1.00000
29.2 0.707107 + 0.707107i −0.707107 0.707107i 1.00000i 0.707107 0.707107i 1.00000i 0 −0.707107 + 0.707107i 1.00000i 1.00000
149.1 −0.707107 + 0.707107i 0.707107 0.707107i 1.00000i −0.707107 0.707107i 1.00000i 0 0.707107 + 0.707107i 1.00000i 1.00000
149.2 0.707107 0.707107i −0.707107 + 0.707107i 1.00000i 0.707107 + 0.707107i 1.00000i 0 −0.707107 0.707107i 1.00000i 1.00000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by Q(15)\Q(\sqrt{-15})
3.b odd 2 1 inner
5.b even 2 1 inner
16.e even 4 1 inner
48.i odd 4 1 inner
80.q even 4 1 inner
240.bm odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 240.1.bm.a 4
3.b odd 2 1 inner 240.1.bm.a 4
4.b odd 2 1 960.1.bm.a 4
5.b even 2 1 inner 240.1.bm.a 4
5.c odd 4 2 1200.1.r.a 4
8.b even 2 1 1920.1.bm.a 4
8.d odd 2 1 1920.1.bm.b 4
12.b even 2 1 960.1.bm.a 4
15.d odd 2 1 CM 240.1.bm.a 4
15.e even 4 2 1200.1.r.a 4
16.e even 4 1 inner 240.1.bm.a 4
16.e even 4 1 1920.1.bm.a 4
16.f odd 4 1 960.1.bm.a 4
16.f odd 4 1 1920.1.bm.b 4
20.d odd 2 1 960.1.bm.a 4
24.f even 2 1 1920.1.bm.b 4
24.h odd 2 1 1920.1.bm.a 4
40.e odd 2 1 1920.1.bm.b 4
40.f even 2 1 1920.1.bm.a 4
48.i odd 4 1 inner 240.1.bm.a 4
48.i odd 4 1 1920.1.bm.a 4
48.k even 4 1 960.1.bm.a 4
48.k even 4 1 1920.1.bm.b 4
60.h even 2 1 960.1.bm.a 4
80.i odd 4 1 1200.1.r.a 4
80.k odd 4 1 960.1.bm.a 4
80.k odd 4 1 1920.1.bm.b 4
80.q even 4 1 inner 240.1.bm.a 4
80.q even 4 1 1920.1.bm.a 4
80.t odd 4 1 1200.1.r.a 4
120.i odd 2 1 1920.1.bm.a 4
120.m even 2 1 1920.1.bm.b 4
240.t even 4 1 960.1.bm.a 4
240.t even 4 1 1920.1.bm.b 4
240.bb even 4 1 1200.1.r.a 4
240.bf even 4 1 1200.1.r.a 4
240.bm odd 4 1 inner 240.1.bm.a 4
240.bm odd 4 1 1920.1.bm.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
240.1.bm.a 4 1.a even 1 1 trivial
240.1.bm.a 4 3.b odd 2 1 inner
240.1.bm.a 4 5.b even 2 1 inner
240.1.bm.a 4 15.d odd 2 1 CM
240.1.bm.a 4 16.e even 4 1 inner
240.1.bm.a 4 48.i odd 4 1 inner
240.1.bm.a 4 80.q even 4 1 inner
240.1.bm.a 4 240.bm odd 4 1 inner
960.1.bm.a 4 4.b odd 2 1
960.1.bm.a 4 12.b even 2 1
960.1.bm.a 4 16.f odd 4 1
960.1.bm.a 4 20.d odd 2 1
960.1.bm.a 4 48.k even 4 1
960.1.bm.a 4 60.h even 2 1
960.1.bm.a 4 80.k odd 4 1
960.1.bm.a 4 240.t even 4 1
1200.1.r.a 4 5.c odd 4 2
1200.1.r.a 4 15.e even 4 2
1200.1.r.a 4 80.i odd 4 1
1200.1.r.a 4 80.t odd 4 1
1200.1.r.a 4 240.bb even 4 1
1200.1.r.a 4 240.bf even 4 1
1920.1.bm.a 4 8.b even 2 1
1920.1.bm.a 4 16.e even 4 1
1920.1.bm.a 4 24.h odd 2 1
1920.1.bm.a 4 40.f even 2 1
1920.1.bm.a 4 48.i odd 4 1
1920.1.bm.a 4 80.q even 4 1
1920.1.bm.a 4 120.i odd 2 1
1920.1.bm.a 4 240.bm odd 4 1
1920.1.bm.b 4 8.d odd 2 1
1920.1.bm.b 4 16.f odd 4 1
1920.1.bm.b 4 24.f even 2 1
1920.1.bm.b 4 40.e odd 2 1
1920.1.bm.b 4 48.k even 4 1
1920.1.bm.b 4 80.k odd 4 1
1920.1.bm.b 4 120.m even 2 1
1920.1.bm.b 4 240.t even 4 1

Hecke kernels

This newform subspace is the entire newspace S1new(240,[χ])S_{1}^{\mathrm{new}}(240, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+1 T^{4} + 1 Copy content Toggle raw display
33 T4+1 T^{4} + 1 Copy content Toggle raw display
55 T4+1 T^{4} + 1 Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 T4 T^{4} Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 (T22)2 (T^{2} - 2)^{2} Copy content Toggle raw display
1919 (T2+2T+2)2 (T^{2} + 2 T + 2)^{2} Copy content Toggle raw display
2323 (T2+2)2 (T^{2} + 2)^{2} Copy content Toggle raw display
2929 T4 T^{4} Copy content Toggle raw display
3131 T4 T^{4} Copy content Toggle raw display
3737 T4 T^{4} Copy content Toggle raw display
4141 T4 T^{4} Copy content Toggle raw display
4343 T4 T^{4} Copy content Toggle raw display
4747 (T22)2 (T^{2} - 2)^{2} Copy content Toggle raw display
5353 T4 T^{4} Copy content Toggle raw display
5959 T4 T^{4} Copy content Toggle raw display
6161 (T22T+2)2 (T^{2} - 2 T + 2)^{2} Copy content Toggle raw display
6767 T4 T^{4} Copy content Toggle raw display
7171 T4 T^{4} Copy content Toggle raw display
7373 T4 T^{4} Copy content Toggle raw display
7979 (T2)4 (T - 2)^{4} Copy content Toggle raw display
8383 T4 T^{4} Copy content Toggle raw display
8989 T4 T^{4} Copy content Toggle raw display
9797 T4 T^{4} Copy content Toggle raw display
show more
show less