L(s) = 1 | + (0.707 − 0.707i)2-s + (−0.707 + 0.707i)3-s − 1.00i·4-s + (0.707 + 0.707i)5-s + 1.00i·6-s + (−0.707 − 0.707i)8-s − 1.00i·9-s + 1.00·10-s + (0.707 + 0.707i)12-s − 1.00·15-s − 1.00·16-s − 1.41·17-s + (−0.707 − 0.707i)18-s + (−1 + i)19-s + (0.707 − 0.707i)20-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)2-s + (−0.707 + 0.707i)3-s − 1.00i·4-s + (0.707 + 0.707i)5-s + 1.00i·6-s + (−0.707 − 0.707i)8-s − 1.00i·9-s + 1.00·10-s + (0.707 + 0.707i)12-s − 1.00·15-s − 1.00·16-s − 1.41·17-s + (−0.707 − 0.707i)18-s + (−1 + i)19-s + (0.707 − 0.707i)20-s + ⋯ |
Λ(s)=(=(240s/2ΓC(s)L(s)(0.923+0.382i)Λ(1−s)
Λ(s)=(=(240s/2ΓC(s)L(s)(0.923+0.382i)Λ(1−s)
Degree: |
2 |
Conductor: |
240
= 24⋅3⋅5
|
Sign: |
0.923+0.382i
|
Analytic conductor: |
0.119775 |
Root analytic conductor: |
0.346086 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ240(149,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 240, ( :0), 0.923+0.382i)
|
Particular Values
L(21) |
≈ |
0.8766671503 |
L(21) |
≈ |
0.8766671503 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.707+0.707i)T |
| 3 | 1+(0.707−0.707i)T |
| 5 | 1+(−0.707−0.707i)T |
good | 7 | 1+T2 |
| 11 | 1−iT2 |
| 13 | 1+iT2 |
| 17 | 1+1.41T+T2 |
| 19 | 1+(1−i)T−iT2 |
| 23 | 1+1.41iT−T2 |
| 29 | 1+iT2 |
| 31 | 1+T2 |
| 37 | 1−iT2 |
| 41 | 1+T2 |
| 43 | 1−iT2 |
| 47 | 1−1.41T+T2 |
| 53 | 1+iT2 |
| 59 | 1−iT2 |
| 61 | 1+(−1+i)T−iT2 |
| 67 | 1+iT2 |
| 71 | 1+T2 |
| 73 | 1+T2 |
| 79 | 1−2T+T2 |
| 83 | 1−iT2 |
| 89 | 1+T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.26721417849261293596645460060, −11.11131220770607798226918165643, −10.64097464556387682232035748743, −9.869253903909641976622981782502, −8.841082183980231248155593852572, −6.64680116357307140519216654282, −6.10824185492806981195453492813, −4.88125479089220107901179134265, −3.82307167587796902320542056164, −2.30617234132287283414117722721,
2.24575443364944395837814610849, 4.41427234721809658050812687514, 5.34247706028749470396480426010, 6.28632739387403651003711591542, 7.10643469094892591735622019280, 8.332017620077728990333548048250, 9.243675452755684177654724180201, 10.84841673103753683404825725208, 11.73527978311156713498965175251, 12.73502049729843391068627570637