L(s) = 1 | − 4·5-s − 9-s − 4·11-s + 11·25-s + 16·31-s + 4·41-s + 4·45-s + 10·49-s + 16·55-s + 20·59-s + 4·61-s − 24·71-s + 81-s + 20·89-s + 4·99-s − 16·101-s − 20·109-s − 10·121-s − 24·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 64·155-s + 157-s + ⋯ |
L(s) = 1 | − 1.78·5-s − 1/3·9-s − 1.20·11-s + 11/5·25-s + 2.87·31-s + 0.624·41-s + 0.596·45-s + 10/7·49-s + 2.15·55-s + 2.60·59-s + 0.512·61-s − 2.84·71-s + 1/9·81-s + 2.11·89-s + 0.402·99-s − 1.59·101-s − 1.91·109-s − 0.909·121-s − 2.14·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 5.14·155-s + 0.0798·157-s + ⋯ |
Λ(s)=(=(57600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(57600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
57600
= 28⋅32⋅52
|
Sign: |
1
|
Analytic conductor: |
3.67262 |
Root analytic conductor: |
1.38434 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 57600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.7825695718 |
L(21) |
≈ |
0.7825695718 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+T2 |
| 5 | C2 | 1+4T+pT2 |
good | 7 | C22 | 1−10T2+p2T4 |
| 11 | C2 | (1+2T+pT2)2 |
| 13 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 17 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 19 | C2 | (1+pT2)2 |
| 23 | C22 | 1−30T2+p2T4 |
| 29 | C2 | (1+pT2)2 |
| 31 | C2 | (1−8T+pT2)2 |
| 37 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 41 | C2 | (1−2T+pT2)2 |
| 43 | C22 | 1−70T2+p2T4 |
| 47 | C22 | 1−30T2+p2T4 |
| 53 | C22 | 1−70T2+p2T4 |
| 59 | C2 | (1−10T+pT2)2 |
| 61 | C2 | (1−2T+pT2)2 |
| 67 | C22 | 1−70T2+p2T4 |
| 71 | C2 | (1+12T+pT2)2 |
| 73 | C22 | 1−130T2+p2T4 |
| 79 | C2 | (1+pT2)2 |
| 83 | C22 | 1−150T2+p2T4 |
| 89 | C2 | (1−10T+pT2)2 |
| 97 | C2 | (1−18T+pT2)(1+18T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.97373279112430878810242545265, −11.97204191946259444215266705660, −11.65746295943836746628078584697, −10.85038935669694538881413320876, −10.60982430904786714834563426049, −10.13056002929891195176822211936, −9.499311722217538316972029861289, −8.637805473386390159780841439932, −8.456148144676839489131086932562, −7.957753317329978975262304578407, −7.53127668903399757597493950167, −7.00717100446239630133784520713, −6.41014651359295177422336904223, −5.61924101980997412333828064393, −5.02781841842898122069153631094, −4.36151973355833603134652685788, −3.94695391081871525948763714951, −2.98301548675506377793302167956, −2.58342719920451962723501294913, −0.72864190327182967399520039641,
0.72864190327182967399520039641, 2.58342719920451962723501294913, 2.98301548675506377793302167956, 3.94695391081871525948763714951, 4.36151973355833603134652685788, 5.02781841842898122069153631094, 5.61924101980997412333828064393, 6.41014651359295177422336904223, 7.00717100446239630133784520713, 7.53127668903399757597493950167, 7.957753317329978975262304578407, 8.456148144676839489131086932562, 8.637805473386390159780841439932, 9.499311722217538316972029861289, 10.13056002929891195176822211936, 10.60982430904786714834563426049, 10.85038935669694538881413320876, 11.65746295943836746628078584697, 11.97204191946259444215266705660, 11.97373279112430878810242545265