Properties

Label 240.2.f.a
Level 240240
Weight 22
Character orbit 240.f
Analytic conductor 1.9161.916
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [240,2,Mod(49,240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("240.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 240=2435 240 = 2^{4} \cdot 3 \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 240.f (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.916409648511.91640964851
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+iq3+(i2)q5+2iq7q92q11+6iq13+(2i1)q152iq172q21+4iq23+(4i+3)q25iq27+8q312iq33+(4i2)q35++2q99+O(q100) q + i q^{3} + (i - 2) q^{5} + 2 i q^{7} - q^{9} - 2 q^{11} + 6 i q^{13} + ( - 2 i - 1) q^{15} - 2 i q^{17} - 2 q^{21} + 4 i q^{23} + ( - 4 i + 3) q^{25} - i q^{27} + 8 q^{31} - 2 i q^{33} + ( - 4 i - 2) q^{35} + \cdots + 2 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q4q52q94q112q154q21+6q25+16q314q3512q39+4q41+4q45+6q49+4q51+8q55+20q59+4q6112q658q69++4q99+O(q100) 2 q - 4 q^{5} - 2 q^{9} - 4 q^{11} - 2 q^{15} - 4 q^{21} + 6 q^{25} + 16 q^{31} - 4 q^{35} - 12 q^{39} + 4 q^{41} + 4 q^{45} + 6 q^{49} + 4 q^{51} + 8 q^{55} + 20 q^{59} + 4 q^{61} - 12 q^{65} - 8 q^{69}+ \cdots + 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/240Z)×\left(\mathbb{Z}/240\mathbb{Z}\right)^\times.

nn 3131 9797 161161 181181
χ(n)\chi(n) 11 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
1.00000i
1.00000i
0 1.00000i 0 −2.00000 1.00000i 0 2.00000i 0 −1.00000 0
49.2 0 1.00000i 0 −2.00000 + 1.00000i 0 2.00000i 0 −1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 240.2.f.a 2
3.b odd 2 1 720.2.f.f 2
4.b odd 2 1 30.2.c.a 2
5.b even 2 1 inner 240.2.f.a 2
5.c odd 4 1 1200.2.a.g 1
5.c odd 4 1 1200.2.a.m 1
8.b even 2 1 960.2.f.i 2
8.d odd 2 1 960.2.f.h 2
12.b even 2 1 90.2.c.a 2
15.d odd 2 1 720.2.f.f 2
15.e even 4 1 3600.2.a.o 1
15.e even 4 1 3600.2.a.bg 1
16.e even 4 1 3840.2.d.j 2
16.e even 4 1 3840.2.d.x 2
16.f odd 4 1 3840.2.d.g 2
16.f odd 4 1 3840.2.d.y 2
20.d odd 2 1 30.2.c.a 2
20.e even 4 1 150.2.a.a 1
20.e even 4 1 150.2.a.c 1
24.f even 2 1 2880.2.f.e 2
24.h odd 2 1 2880.2.f.c 2
28.d even 2 1 1470.2.g.g 2
28.f even 6 2 1470.2.n.a 4
28.g odd 6 2 1470.2.n.h 4
36.f odd 6 2 810.2.i.e 4
36.h even 6 2 810.2.i.b 4
40.e odd 2 1 960.2.f.h 2
40.f even 2 1 960.2.f.i 2
40.i odd 4 1 4800.2.a.m 1
40.i odd 4 1 4800.2.a.cj 1
40.k even 4 1 4800.2.a.l 1
40.k even 4 1 4800.2.a.cg 1
60.h even 2 1 90.2.c.a 2
60.l odd 4 1 450.2.a.b 1
60.l odd 4 1 450.2.a.f 1
80.k odd 4 1 3840.2.d.g 2
80.k odd 4 1 3840.2.d.y 2
80.q even 4 1 3840.2.d.j 2
80.q even 4 1 3840.2.d.x 2
120.i odd 2 1 2880.2.f.c 2
120.m even 2 1 2880.2.f.e 2
140.c even 2 1 1470.2.g.g 2
140.j odd 4 1 7350.2.a.bg 1
140.j odd 4 1 7350.2.a.cc 1
140.p odd 6 2 1470.2.n.h 4
140.s even 6 2 1470.2.n.a 4
180.n even 6 2 810.2.i.b 4
180.p odd 6 2 810.2.i.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.2.c.a 2 4.b odd 2 1
30.2.c.a 2 20.d odd 2 1
90.2.c.a 2 12.b even 2 1
90.2.c.a 2 60.h even 2 1
150.2.a.a 1 20.e even 4 1
150.2.a.c 1 20.e even 4 1
240.2.f.a 2 1.a even 1 1 trivial
240.2.f.a 2 5.b even 2 1 inner
450.2.a.b 1 60.l odd 4 1
450.2.a.f 1 60.l odd 4 1
720.2.f.f 2 3.b odd 2 1
720.2.f.f 2 15.d odd 2 1
810.2.i.b 4 36.h even 6 2
810.2.i.b 4 180.n even 6 2
810.2.i.e 4 36.f odd 6 2
810.2.i.e 4 180.p odd 6 2
960.2.f.h 2 8.d odd 2 1
960.2.f.h 2 40.e odd 2 1
960.2.f.i 2 8.b even 2 1
960.2.f.i 2 40.f even 2 1
1200.2.a.g 1 5.c odd 4 1
1200.2.a.m 1 5.c odd 4 1
1470.2.g.g 2 28.d even 2 1
1470.2.g.g 2 140.c even 2 1
1470.2.n.a 4 28.f even 6 2
1470.2.n.a 4 140.s even 6 2
1470.2.n.h 4 28.g odd 6 2
1470.2.n.h 4 140.p odd 6 2
2880.2.f.c 2 24.h odd 2 1
2880.2.f.c 2 120.i odd 2 1
2880.2.f.e 2 24.f even 2 1
2880.2.f.e 2 120.m even 2 1
3600.2.a.o 1 15.e even 4 1
3600.2.a.bg 1 15.e even 4 1
3840.2.d.g 2 16.f odd 4 1
3840.2.d.g 2 80.k odd 4 1
3840.2.d.j 2 16.e even 4 1
3840.2.d.j 2 80.q even 4 1
3840.2.d.x 2 16.e even 4 1
3840.2.d.x 2 80.q even 4 1
3840.2.d.y 2 16.f odd 4 1
3840.2.d.y 2 80.k odd 4 1
4800.2.a.l 1 40.k even 4 1
4800.2.a.m 1 40.i odd 4 1
4800.2.a.cg 1 40.k even 4 1
4800.2.a.cj 1 40.i odd 4 1
7350.2.a.bg 1 140.j odd 4 1
7350.2.a.cc 1 140.j odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(240,[χ])S_{2}^{\mathrm{new}}(240, [\chi]):

T72+4 T_{7}^{2} + 4 Copy content Toggle raw display
T132+36 T_{13}^{2} + 36 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+1 T^{2} + 1 Copy content Toggle raw display
55 T2+4T+5 T^{2} + 4T + 5 Copy content Toggle raw display
77 T2+4 T^{2} + 4 Copy content Toggle raw display
1111 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
1313 T2+36 T^{2} + 36 Copy content Toggle raw display
1717 T2+4 T^{2} + 4 Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T2+16 T^{2} + 16 Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 (T8)2 (T - 8)^{2} Copy content Toggle raw display
3737 T2+4 T^{2} + 4 Copy content Toggle raw display
4141 (T2)2 (T - 2)^{2} Copy content Toggle raw display
4343 T2+16 T^{2} + 16 Copy content Toggle raw display
4747 T2+64 T^{2} + 64 Copy content Toggle raw display
5353 T2+36 T^{2} + 36 Copy content Toggle raw display
5959 (T10)2 (T - 10)^{2} Copy content Toggle raw display
6161 (T2)2 (T - 2)^{2} Copy content Toggle raw display
6767 T2+64 T^{2} + 64 Copy content Toggle raw display
7171 (T+12)2 (T + 12)^{2} Copy content Toggle raw display
7373 T2+16 T^{2} + 16 Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T2+16 T^{2} + 16 Copy content Toggle raw display
8989 (T10)2 (T - 10)^{2} Copy content Toggle raw display
9797 T2+64 T^{2} + 64 Copy content Toggle raw display
show more
show less