Properties

Label 7350.2.a.bg
Level $7350$
Weight $2$
Character orbit 7350.a
Self dual yes
Analytic conductor $58.690$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7350,2,Mod(1,7350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7350.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7350 = 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7350.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(58.6900454856\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{2} + q^{3} + q^{4} - q^{6} - q^{8} + q^{9} + 2 q^{11} + q^{12} - 6 q^{13} + q^{16} - 2 q^{17} - q^{18} - 2 q^{22} - 4 q^{23} - q^{24} + 6 q^{26} + q^{27} + 8 q^{31} - q^{32} + 2 q^{33}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 1.00000 1.00000 0 −1.00000 0 −1.00000 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7350.2.a.bg 1
5.b even 2 1 7350.2.a.cc 1
5.c odd 4 2 1470.2.g.g 2
7.b odd 2 1 150.2.a.a 1
21.c even 2 1 450.2.a.f 1
28.d even 2 1 1200.2.a.m 1
35.c odd 2 1 150.2.a.c 1
35.f even 4 2 30.2.c.a 2
35.k even 12 4 1470.2.n.h 4
35.l odd 12 4 1470.2.n.a 4
56.e even 2 1 4800.2.a.m 1
56.h odd 2 1 4800.2.a.cg 1
84.h odd 2 1 3600.2.a.o 1
105.g even 2 1 450.2.a.b 1
105.k odd 4 2 90.2.c.a 2
140.c even 2 1 1200.2.a.g 1
140.j odd 4 2 240.2.f.a 2
280.c odd 2 1 4800.2.a.l 1
280.n even 2 1 4800.2.a.cj 1
280.s even 4 2 960.2.f.h 2
280.y odd 4 2 960.2.f.i 2
315.cb even 12 4 810.2.i.e 4
315.cf odd 12 4 810.2.i.b 4
420.o odd 2 1 3600.2.a.bg 1
420.w even 4 2 720.2.f.f 2
560.r even 4 2 3840.2.d.g 2
560.u odd 4 2 3840.2.d.j 2
560.bm odd 4 2 3840.2.d.x 2
560.bn even 4 2 3840.2.d.y 2
840.bm even 4 2 2880.2.f.c 2
840.bp odd 4 2 2880.2.f.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.2.c.a 2 35.f even 4 2
90.2.c.a 2 105.k odd 4 2
150.2.a.a 1 7.b odd 2 1
150.2.a.c 1 35.c odd 2 1
240.2.f.a 2 140.j odd 4 2
450.2.a.b 1 105.g even 2 1
450.2.a.f 1 21.c even 2 1
720.2.f.f 2 420.w even 4 2
810.2.i.b 4 315.cf odd 12 4
810.2.i.e 4 315.cb even 12 4
960.2.f.h 2 280.s even 4 2
960.2.f.i 2 280.y odd 4 2
1200.2.a.g 1 140.c even 2 1
1200.2.a.m 1 28.d even 2 1
1470.2.g.g 2 5.c odd 4 2
1470.2.n.a 4 35.l odd 12 4
1470.2.n.h 4 35.k even 12 4
2880.2.f.c 2 840.bm even 4 2
2880.2.f.e 2 840.bp odd 4 2
3600.2.a.o 1 84.h odd 2 1
3600.2.a.bg 1 420.o odd 2 1
3840.2.d.g 2 560.r even 4 2
3840.2.d.j 2 560.u odd 4 2
3840.2.d.x 2 560.bm odd 4 2
3840.2.d.y 2 560.bn even 4 2
4800.2.a.l 1 280.c odd 2 1
4800.2.a.m 1 56.e even 2 1
4800.2.a.cg 1 56.h odd 2 1
4800.2.a.cj 1 280.n even 2 1
7350.2.a.bg 1 1.a even 1 1 trivial
7350.2.a.cc 1 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7350))\):

\( T_{11} - 2 \) Copy content Toggle raw display
\( T_{13} + 6 \) Copy content Toggle raw display
\( T_{17} + 2 \) Copy content Toggle raw display
\( T_{19} \) Copy content Toggle raw display
\( T_{23} + 4 \) Copy content Toggle raw display
\( T_{31} - 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 2 \) Copy content Toggle raw display
$13$ \( T + 6 \) Copy content Toggle raw display
$17$ \( T + 2 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T + 4 \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T - 8 \) Copy content Toggle raw display
$37$ \( T - 2 \) Copy content Toggle raw display
$41$ \( T + 2 \) Copy content Toggle raw display
$43$ \( T + 4 \) Copy content Toggle raw display
$47$ \( T - 8 \) Copy content Toggle raw display
$53$ \( T - 6 \) Copy content Toggle raw display
$59$ \( T + 10 \) Copy content Toggle raw display
$61$ \( T + 2 \) Copy content Toggle raw display
$67$ \( T + 8 \) Copy content Toggle raw display
$71$ \( T - 12 \) Copy content Toggle raw display
$73$ \( T - 4 \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T - 4 \) Copy content Toggle raw display
$89$ \( T - 10 \) Copy content Toggle raw display
$97$ \( T - 8 \) Copy content Toggle raw display
show more
show less