Properties

Label 3840.2.d.j
Level 38403840
Weight 22
Character orbit 3840.d
Analytic conductor 30.66330.663
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3840,2,Mod(2689,3840)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3840, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3840.2689");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3840=2835 3840 = 2^{8} \cdot 3 \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3840.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 30.662554376230.6625543762
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=2i\beta = 2i. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qq3+(β+1)q5+βq7+q9βq116q13+(β1)q15+βq17βq21+2βq23+(2β3)q25q27+8q31+βq33+βq99+O(q100) q - q^{3} + ( - \beta + 1) q^{5} + \beta q^{7} + q^{9} - \beta q^{11} - 6 q^{13} + (\beta - 1) q^{15} + \beta q^{17} - \beta q^{21} + 2 \beta q^{23} + ( - 2 \beta - 3) q^{25} - q^{27} + 8 q^{31} + \beta q^{33} + \cdots - \beta q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q3+2q5+2q912q132q156q252q27+16q31+8q354q37+12q394q41+8q43+2q45+6q49+12q538q5512q65+16q93+O(q100) 2 q - 2 q^{3} + 2 q^{5} + 2 q^{9} - 12 q^{13} - 2 q^{15} - 6 q^{25} - 2 q^{27} + 16 q^{31} + 8 q^{35} - 4 q^{37} + 12 q^{39} - 4 q^{41} + 8 q^{43} + 2 q^{45} + 6 q^{49} + 12 q^{53} - 8 q^{55} - 12 q^{65}+ \cdots - 16 q^{93}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3840Z)×\left(\mathbb{Z}/3840\mathbb{Z}\right)^\times.

nn 511511 15371537 25612561 28212821
χ(n)\chi(n) 11 1-1 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
2689.1
1.00000i
1.00000i
0 −1.00000 0 1.00000 2.00000i 0 2.00000i 0 1.00000 0
2689.2 0 −1.00000 0 1.00000 + 2.00000i 0 2.00000i 0 1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
40.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3840.2.d.j 2
4.b odd 2 1 3840.2.d.y 2
5.b even 2 1 3840.2.d.x 2
8.b even 2 1 3840.2.d.x 2
8.d odd 2 1 3840.2.d.g 2
16.e even 4 1 240.2.f.a 2
16.e even 4 1 960.2.f.i 2
16.f odd 4 1 30.2.c.a 2
16.f odd 4 1 960.2.f.h 2
20.d odd 2 1 3840.2.d.g 2
40.e odd 2 1 3840.2.d.y 2
40.f even 2 1 inner 3840.2.d.j 2
48.i odd 4 1 720.2.f.f 2
48.i odd 4 1 2880.2.f.c 2
48.k even 4 1 90.2.c.a 2
48.k even 4 1 2880.2.f.e 2
80.i odd 4 1 1200.2.a.m 1
80.i odd 4 1 4800.2.a.cj 1
80.j even 4 1 150.2.a.c 1
80.j even 4 1 4800.2.a.cg 1
80.k odd 4 1 30.2.c.a 2
80.k odd 4 1 960.2.f.h 2
80.q even 4 1 240.2.f.a 2
80.q even 4 1 960.2.f.i 2
80.s even 4 1 150.2.a.a 1
80.s even 4 1 4800.2.a.l 1
80.t odd 4 1 1200.2.a.g 1
80.t odd 4 1 4800.2.a.m 1
112.j even 4 1 1470.2.g.g 2
112.u odd 12 2 1470.2.n.h 4
112.v even 12 2 1470.2.n.a 4
144.u even 12 2 810.2.i.b 4
144.v odd 12 2 810.2.i.e 4
240.t even 4 1 90.2.c.a 2
240.t even 4 1 2880.2.f.e 2
240.z odd 4 1 450.2.a.f 1
240.bb even 4 1 3600.2.a.o 1
240.bd odd 4 1 450.2.a.b 1
240.bf even 4 1 3600.2.a.bg 1
240.bm odd 4 1 720.2.f.f 2
240.bm odd 4 1 2880.2.f.c 2
560.u odd 4 1 7350.2.a.bg 1
560.be even 4 1 1470.2.g.g 2
560.bm odd 4 1 7350.2.a.cc 1
560.co even 12 2 1470.2.n.a 4
560.cs odd 12 2 1470.2.n.h 4
720.cz odd 12 2 810.2.i.e 4
720.da even 12 2 810.2.i.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.2.c.a 2 16.f odd 4 1
30.2.c.a 2 80.k odd 4 1
90.2.c.a 2 48.k even 4 1
90.2.c.a 2 240.t even 4 1
150.2.a.a 1 80.s even 4 1
150.2.a.c 1 80.j even 4 1
240.2.f.a 2 16.e even 4 1
240.2.f.a 2 80.q even 4 1
450.2.a.b 1 240.bd odd 4 1
450.2.a.f 1 240.z odd 4 1
720.2.f.f 2 48.i odd 4 1
720.2.f.f 2 240.bm odd 4 1
810.2.i.b 4 144.u even 12 2
810.2.i.b 4 720.da even 12 2
810.2.i.e 4 144.v odd 12 2
810.2.i.e 4 720.cz odd 12 2
960.2.f.h 2 16.f odd 4 1
960.2.f.h 2 80.k odd 4 1
960.2.f.i 2 16.e even 4 1
960.2.f.i 2 80.q even 4 1
1200.2.a.g 1 80.t odd 4 1
1200.2.a.m 1 80.i odd 4 1
1470.2.g.g 2 112.j even 4 1
1470.2.g.g 2 560.be even 4 1
1470.2.n.a 4 112.v even 12 2
1470.2.n.a 4 560.co even 12 2
1470.2.n.h 4 112.u odd 12 2
1470.2.n.h 4 560.cs odd 12 2
2880.2.f.c 2 48.i odd 4 1
2880.2.f.c 2 240.bm odd 4 1
2880.2.f.e 2 48.k even 4 1
2880.2.f.e 2 240.t even 4 1
3600.2.a.o 1 240.bb even 4 1
3600.2.a.bg 1 240.bf even 4 1
3840.2.d.g 2 8.d odd 2 1
3840.2.d.g 2 20.d odd 2 1
3840.2.d.j 2 1.a even 1 1 trivial
3840.2.d.j 2 40.f even 2 1 inner
3840.2.d.x 2 5.b even 2 1
3840.2.d.x 2 8.b even 2 1
3840.2.d.y 2 4.b odd 2 1
3840.2.d.y 2 40.e odd 2 1
4800.2.a.l 1 80.s even 4 1
4800.2.a.m 1 80.t odd 4 1
4800.2.a.cg 1 80.j even 4 1
4800.2.a.cj 1 80.i odd 4 1
7350.2.a.bg 1 560.u odd 4 1
7350.2.a.cc 1 560.bm odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(3840,[χ])S_{2}^{\mathrm{new}}(3840, [\chi]):

T72+4 T_{7}^{2} + 4 Copy content Toggle raw display
T112+4 T_{11}^{2} + 4 Copy content Toggle raw display
T13+6 T_{13} + 6 Copy content Toggle raw display
T318 T_{31} - 8 Copy content Toggle raw display
T37+2 T_{37} + 2 Copy content Toggle raw display
T434 T_{43} - 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
55 T22T+5 T^{2} - 2T + 5 Copy content Toggle raw display
77 T2+4 T^{2} + 4 Copy content Toggle raw display
1111 T2+4 T^{2} + 4 Copy content Toggle raw display
1313 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
1717 T2+4 T^{2} + 4 Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T2+16 T^{2} + 16 Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 (T8)2 (T - 8)^{2} Copy content Toggle raw display
3737 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
4141 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
4343 (T4)2 (T - 4)^{2} Copy content Toggle raw display
4747 T2+64 T^{2} + 64 Copy content Toggle raw display
5353 (T6)2 (T - 6)^{2} Copy content Toggle raw display
5959 T2+100 T^{2} + 100 Copy content Toggle raw display
6161 T2+4 T^{2} + 4 Copy content Toggle raw display
6767 (T8)2 (T - 8)^{2} Copy content Toggle raw display
7171 (T12)2 (T - 12)^{2} Copy content Toggle raw display
7373 T2+16 T^{2} + 16 Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
8989 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
9797 T2+64 T^{2} + 64 Copy content Toggle raw display
show more
show less