Properties

Label 2-3840-40.29-c1-0-42
Degree $2$
Conductor $3840$
Sign $0.948 + 0.316i$
Analytic cond. $30.6625$
Root an. cond. $5.53737$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + (1 + 2i)5-s − 2i·7-s + 9-s + 2i·11-s − 6·13-s + (−1 − 2i)15-s − 2i·17-s + 2i·21-s − 4i·23-s + (−3 + 4i)25-s − 27-s + 8·31-s − 2i·33-s + (4 − 2i)35-s + ⋯
L(s)  = 1  − 0.577·3-s + (0.447 + 0.894i)5-s − 0.755i·7-s + 0.333·9-s + 0.603i·11-s − 1.66·13-s + (−0.258 − 0.516i)15-s − 0.485i·17-s + 0.436i·21-s − 0.834i·23-s + (−0.600 + 0.800i)25-s − 0.192·27-s + 1.43·31-s − 0.348i·33-s + (0.676 − 0.338i)35-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.948 + 0.316i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.948 + 0.316i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3840\)    =    \(2^{8} \cdot 3 \cdot 5\)
Sign: $0.948 + 0.316i$
Analytic conductor: \(30.6625\)
Root analytic conductor: \(5.53737\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3840} (2689, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3840,\ (\ :1/2),\ 0.948 + 0.316i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.326944436\)
\(L(\frac12)\) \(\approx\) \(1.326944436\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + (-1 - 2i)T \)
good7 \( 1 + 2iT - 7T^{2} \)
11 \( 1 - 2iT - 11T^{2} \)
13 \( 1 + 6T + 13T^{2} \)
17 \( 1 + 2iT - 17T^{2} \)
19 \( 1 - 19T^{2} \)
23 \( 1 + 4iT - 23T^{2} \)
29 \( 1 - 29T^{2} \)
31 \( 1 - 8T + 31T^{2} \)
37 \( 1 + 2T + 37T^{2} \)
41 \( 1 + 2T + 41T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 + 8iT - 47T^{2} \)
53 \( 1 - 6T + 53T^{2} \)
59 \( 1 + 10iT - 59T^{2} \)
61 \( 1 - 2iT - 61T^{2} \)
67 \( 1 - 8T + 67T^{2} \)
71 \( 1 - 12T + 71T^{2} \)
73 \( 1 - 4iT - 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + 4T + 83T^{2} \)
89 \( 1 + 10T + 89T^{2} \)
97 \( 1 - 8iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.320474709041013846904569692056, −7.37435437745216037539003831738, −7.00391833884896956190005850099, −6.44437738256167999445675951038, −5.37891102645110930637204927089, −4.76392071969394491282135993248, −3.93149578012733630907591592964, −2.75999272539017993770504633101, −2.07046516807725488064017094206, −0.56198214387489170079528983524, 0.809691506752474739841906517454, 1.99012172003255131090625225102, 2.85210407774094641046806171620, 4.16665499899804697515247924569, 4.92183341417785139541281227482, 5.54262494717769131249850345506, 6.06467204441022122435988759374, 7.00074252106946386729288262558, 7.87976864954381779992624312889, 8.553581912343736601123640740697

Graph of the $Z$-function along the critical line