Properties

Label 2-240-12.11-c7-0-3
Degree $2$
Conductor $240$
Sign $-0.567 + 0.823i$
Analytic cond. $74.9724$
Root an. cond. $8.65866$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−42.2 + 20.0i)3-s − 125i·5-s + 1.61e3i·7-s + (1.37e3 − 1.69e3i)9-s − 504.·11-s − 9.49e3·13-s + (2.51e3 + 5.27e3i)15-s − 4.16e3i·17-s + 4.38e4i·19-s + (−3.24e4 − 6.82e4i)21-s + 2.23e4·23-s − 1.56e4·25-s + (−2.41e4 + 9.93e4i)27-s + 2.44e5i·29-s − 5.62e4i·31-s + ⋯
L(s)  = 1  + (−0.902 + 0.429i)3-s − 0.447i·5-s + 1.77i·7-s + (0.630 − 0.775i)9-s − 0.114·11-s − 1.19·13-s + (0.192 + 0.403i)15-s − 0.205i·17-s + 1.46i·19-s + (−0.764 − 1.60i)21-s + 0.383·23-s − 0.199·25-s + (−0.236 + 0.971i)27-s + 1.86i·29-s − 0.339i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.567 + 0.823i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.567 + 0.823i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(240\)    =    \(2^{4} \cdot 3 \cdot 5\)
Sign: $-0.567 + 0.823i$
Analytic conductor: \(74.9724\)
Root analytic conductor: \(8.65866\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{240} (191, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 240,\ (\ :7/2),\ -0.567 + 0.823i)\)

Particular Values

\(L(4)\) \(\approx\) \(0.2577222288\)
\(L(\frac12)\) \(\approx\) \(0.2577222288\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (42.2 - 20.0i)T \)
5 \( 1 + 125iT \)
good7 \( 1 - 1.61e3iT - 8.23e5T^{2} \)
11 \( 1 + 504.T + 1.94e7T^{2} \)
13 \( 1 + 9.49e3T + 6.27e7T^{2} \)
17 \( 1 + 4.16e3iT - 4.10e8T^{2} \)
19 \( 1 - 4.38e4iT - 8.93e8T^{2} \)
23 \( 1 - 2.23e4T + 3.40e9T^{2} \)
29 \( 1 - 2.44e5iT - 1.72e10T^{2} \)
31 \( 1 + 5.62e4iT - 2.75e10T^{2} \)
37 \( 1 - 2.55e5T + 9.49e10T^{2} \)
41 \( 1 - 7.04e4iT - 1.94e11T^{2} \)
43 \( 1 - 2.40e5iT - 2.71e11T^{2} \)
47 \( 1 - 5.63e5T + 5.06e11T^{2} \)
53 \( 1 - 1.03e6iT - 1.17e12T^{2} \)
59 \( 1 + 2.42e6T + 2.48e12T^{2} \)
61 \( 1 - 1.04e6T + 3.14e12T^{2} \)
67 \( 1 + 9.30e4iT - 6.06e12T^{2} \)
71 \( 1 + 5.15e6T + 9.09e12T^{2} \)
73 \( 1 + 2.53e6T + 1.10e13T^{2} \)
79 \( 1 + 6.21e6iT - 1.92e13T^{2} \)
83 \( 1 - 9.59e6T + 2.71e13T^{2} \)
89 \( 1 + 9.31e6iT - 4.42e13T^{2} \)
97 \( 1 - 9.65e5T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.74810460562207743279780022929, −10.54233914790877299093251108193, −9.525596316531785793871945175598, −8.865931731999034249789281303483, −7.54720491008424058382829000186, −6.12520230303132060541843856934, −5.42460548646659116617064345039, −4.60413993264008508531882922710, −2.97512214108888258908136564579, −1.57791578142911233161426949434, 0.085652503590857423268690371271, 0.900178725333077761205268349766, 2.45733052016288518910220314788, 4.11526824271605844562389518513, 4.98107155517121817558017798920, 6.42777657222255392719952393062, 7.19597066098583999553780368379, 7.77812078802319043572549845931, 9.627492565564584494931957444507, 10.45728485335317053519255219646

Graph of the $Z$-function along the critical line