L(s) = 1 | + (−42.2 + 20.0i)3-s − 125i·5-s + 1.61e3i·7-s + (1.37e3 − 1.69e3i)9-s − 504.·11-s − 9.49e3·13-s + (2.51e3 + 5.27e3i)15-s − 4.16e3i·17-s + 4.38e4i·19-s + (−3.24e4 − 6.82e4i)21-s + 2.23e4·23-s − 1.56e4·25-s + (−2.41e4 + 9.93e4i)27-s + 2.44e5i·29-s − 5.62e4i·31-s + ⋯ |
L(s) = 1 | + (−0.902 + 0.429i)3-s − 0.447i·5-s + 1.77i·7-s + (0.630 − 0.775i)9-s − 0.114·11-s − 1.19·13-s + (0.192 + 0.403i)15-s − 0.205i·17-s + 1.46i·19-s + (−0.764 − 1.60i)21-s + 0.383·23-s − 0.199·25-s + (−0.236 + 0.971i)27-s + 1.86i·29-s − 0.339i·31-s + ⋯ |
Λ(s)=(=(240s/2ΓC(s)L(s)(−0.567+0.823i)Λ(8−s)
Λ(s)=(=(240s/2ΓC(s+7/2)L(s)(−0.567+0.823i)Λ(1−s)
Degree: |
2 |
Conductor: |
240
= 24⋅3⋅5
|
Sign: |
−0.567+0.823i
|
Analytic conductor: |
74.9724 |
Root analytic conductor: |
8.65866 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ240(191,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 240, ( :7/2), −0.567+0.823i)
|
Particular Values
L(4) |
≈ |
0.2577222288 |
L(21) |
≈ |
0.2577222288 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(42.2−20.0i)T |
| 5 | 1+125iT |
good | 7 | 1−1.61e3iT−8.23e5T2 |
| 11 | 1+504.T+1.94e7T2 |
| 13 | 1+9.49e3T+6.27e7T2 |
| 17 | 1+4.16e3iT−4.10e8T2 |
| 19 | 1−4.38e4iT−8.93e8T2 |
| 23 | 1−2.23e4T+3.40e9T2 |
| 29 | 1−2.44e5iT−1.72e10T2 |
| 31 | 1+5.62e4iT−2.75e10T2 |
| 37 | 1−2.55e5T+9.49e10T2 |
| 41 | 1−7.04e4iT−1.94e11T2 |
| 43 | 1−2.40e5iT−2.71e11T2 |
| 47 | 1−5.63e5T+5.06e11T2 |
| 53 | 1−1.03e6iT−1.17e12T2 |
| 59 | 1+2.42e6T+2.48e12T2 |
| 61 | 1−1.04e6T+3.14e12T2 |
| 67 | 1+9.30e4iT−6.06e12T2 |
| 71 | 1+5.15e6T+9.09e12T2 |
| 73 | 1+2.53e6T+1.10e13T2 |
| 79 | 1+6.21e6iT−1.92e13T2 |
| 83 | 1−9.59e6T+2.71e13T2 |
| 89 | 1+9.31e6iT−4.42e13T2 |
| 97 | 1−9.65e5T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.74810460562207743279780022929, −10.54233914790877299093251108193, −9.525596316531785793871945175598, −8.865931731999034249789281303483, −7.54720491008424058382829000186, −6.12520230303132060541843856934, −5.42460548646659116617064345039, −4.60413993264008508531882922710, −2.97512214108888258908136564579, −1.57791578142911233161426949434,
0.085652503590857423268690371271, 0.900178725333077761205268349766, 2.45733052016288518910220314788, 4.11526824271605844562389518513, 4.98107155517121817558017798920, 6.42777657222255392719952393062, 7.19597066098583999553780368379, 7.77812078802319043572549845931, 9.627492565564584494931957444507, 10.45728485335317053519255219646