Properties

Label 240.8.h.b.191.6
Level $240$
Weight $8$
Character 240.191
Analytic conductor $74.972$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [240,8,Mod(191,240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("240.191");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 240.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(74.9724061162\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.6
Character \(\chi\) \(=\) 240.191
Dual form 240.8.h.b.191.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-42.2282 + 20.0943i) q^{3} -125.000i q^{5} +1615.14i q^{7} +(1379.44 - 1697.09i) q^{9} -504.807 q^{11} -9494.97 q^{13} +(2511.79 + 5278.52i) q^{15} -4167.95i q^{17} +43866.8i q^{19} +(-32455.1 - 68204.2i) q^{21} +22361.0 q^{23} -15625.0 q^{25} +(-24149.1 + 99384.0i) q^{27} +244935. i q^{29} -56250.1i q^{31} +(21317.1 - 10143.8i) q^{33} +201892. q^{35} +255240. q^{37} +(400955. - 190795. i) q^{39} +70497.9i q^{41} +240483. i q^{43} +(-212137. - 172430. i) q^{45} +563322. q^{47} -1.78512e6 q^{49} +(83752.1 + 176005. i) q^{51} +1.03606e6i q^{53} +63100.9i q^{55} +(-881473. - 1.85241e6i) q^{57} -2.42345e6 q^{59} +1.04708e6 q^{61} +(2.74104e6 + 2.22798e6i) q^{63} +1.18687e6i q^{65} -93046.8i q^{67} +(-944264. + 449329. i) q^{69} -5.15867e6 q^{71} -2.53785e6 q^{73} +(659815. - 313974. i) q^{75} -815332. i q^{77} -6.21039e6i q^{79} +(-977281. - 4.68206e6i) q^{81} +9.59459e6 q^{83} -520993. q^{85} +(-4.92180e6 - 1.03432e7i) q^{87} -9.31922e6i q^{89} -1.53357e7i q^{91} +(1.13031e6 + 2.37534e6i) q^{93} +5.48334e6 q^{95} +965673. q^{97} +(-696349. + 856704. i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 3324 q^{9} - 432 q^{13} - 22032 q^{21} - 562500 q^{25} - 386232 q^{33} + 1200048 q^{37} - 1710000 q^{45} - 3237972 q^{49} - 9331200 q^{57} + 11262360 q^{61} - 11352552 q^{69} + 37210296 q^{73} - 12564252 q^{81}+ \cdots + 94537320 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −42.2282 + 20.0943i −0.902979 + 0.429684i
\(4\) 0 0
\(5\) 125.000i 0.447214i
\(6\) 0 0
\(7\) 1615.14i 1.77978i 0.456177 + 0.889889i \(0.349218\pi\)
−0.456177 + 0.889889i \(0.650782\pi\)
\(8\) 0 0
\(9\) 1379.44 1697.09i 0.630744 0.775991i
\(10\) 0 0
\(11\) −504.807 −0.114354 −0.0571769 0.998364i \(-0.518210\pi\)
−0.0571769 + 0.998364i \(0.518210\pi\)
\(12\) 0 0
\(13\) −9494.97 −1.19865 −0.599324 0.800506i \(-0.704564\pi\)
−0.599324 + 0.800506i \(0.704564\pi\)
\(14\) 0 0
\(15\) 2511.79 + 5278.52i 0.192160 + 0.403825i
\(16\) 0 0
\(17\) 4167.95i 0.205755i −0.994694 0.102878i \(-0.967195\pi\)
0.994694 0.102878i \(-0.0328050\pi\)
\(18\) 0 0
\(19\) 43866.8i 1.46723i 0.679566 + 0.733614i \(0.262168\pi\)
−0.679566 + 0.733614i \(0.737832\pi\)
\(20\) 0 0
\(21\) −32455.1 68204.2i −0.764742 1.60710i
\(22\) 0 0
\(23\) 22361.0 0.383216 0.191608 0.981472i \(-0.438630\pi\)
0.191608 + 0.981472i \(0.438630\pi\)
\(24\) 0 0
\(25\) −15625.0 −0.200000
\(26\) 0 0
\(27\) −24149.1 + 99384.0i −0.236117 + 0.971725i
\(28\) 0 0
\(29\) 244935.i 1.86491i 0.361286 + 0.932455i \(0.382338\pi\)
−0.361286 + 0.932455i \(0.617662\pi\)
\(30\) 0 0
\(31\) 56250.1i 0.339123i −0.985520 0.169561i \(-0.945765\pi\)
0.985520 0.169561i \(-0.0542351\pi\)
\(32\) 0 0
\(33\) 21317.1 10143.8i 0.103259 0.0491360i
\(34\) 0 0
\(35\) 201892. 0.795941
\(36\) 0 0
\(37\) 255240. 0.828405 0.414202 0.910185i \(-0.364061\pi\)
0.414202 + 0.910185i \(0.364061\pi\)
\(38\) 0 0
\(39\) 400955. 190795.i 1.08235 0.515040i
\(40\) 0 0
\(41\) 70497.9i 0.159747i 0.996805 + 0.0798735i \(0.0254516\pi\)
−0.996805 + 0.0798735i \(0.974548\pi\)
\(42\) 0 0
\(43\) 240483.i 0.461259i 0.973042 + 0.230630i \(0.0740786\pi\)
−0.973042 + 0.230630i \(0.925921\pi\)
\(44\) 0 0
\(45\) −212137. 172430.i −0.347034 0.282077i
\(46\) 0 0
\(47\) 563322. 0.791433 0.395716 0.918373i \(-0.370496\pi\)
0.395716 + 0.918373i \(0.370496\pi\)
\(48\) 0 0
\(49\) −1.78512e6 −2.16761
\(50\) 0 0
\(51\) 83752.1 + 176005.i 0.0884097 + 0.185793i
\(52\) 0 0
\(53\) 1.03606e6i 0.955911i 0.878384 + 0.477956i \(0.158622\pi\)
−0.878384 + 0.477956i \(0.841378\pi\)
\(54\) 0 0
\(55\) 63100.9i 0.0511406i
\(56\) 0 0
\(57\) −881473. 1.85241e6i −0.630445 1.32488i
\(58\) 0 0
\(59\) −2.42345e6 −1.53622 −0.768109 0.640319i \(-0.778802\pi\)
−0.768109 + 0.640319i \(0.778802\pi\)
\(60\) 0 0
\(61\) 1.04708e6 0.590643 0.295321 0.955398i \(-0.404573\pi\)
0.295321 + 0.955398i \(0.404573\pi\)
\(62\) 0 0
\(63\) 2.74104e6 + 2.22798e6i 1.38109 + 1.12258i
\(64\) 0 0
\(65\) 1.18687e6i 0.536052i
\(66\) 0 0
\(67\) 93046.8i 0.0377955i −0.999821 0.0188977i \(-0.993984\pi\)
0.999821 0.0188977i \(-0.00601569\pi\)
\(68\) 0 0
\(69\) −944264. + 449329.i −0.346036 + 0.164662i
\(70\) 0 0
\(71\) −5.15867e6 −1.71054 −0.855270 0.518183i \(-0.826609\pi\)
−0.855270 + 0.518183i \(0.826609\pi\)
\(72\) 0 0
\(73\) −2.53785e6 −0.763548 −0.381774 0.924256i \(-0.624687\pi\)
−0.381774 + 0.924256i \(0.624687\pi\)
\(74\) 0 0
\(75\) 659815. 313974.i 0.180596 0.0859368i
\(76\) 0 0
\(77\) 815332.i 0.203525i
\(78\) 0 0
\(79\) 6.21039e6i 1.41718i −0.705622 0.708589i \(-0.749332\pi\)
0.705622 0.708589i \(-0.250668\pi\)
\(80\) 0 0
\(81\) −977281. 4.68206e6i −0.204325 0.978903i
\(82\) 0 0
\(83\) 9.59459e6 1.84184 0.920922 0.389747i \(-0.127437\pi\)
0.920922 + 0.389747i \(0.127437\pi\)
\(84\) 0 0
\(85\) −520993. −0.0920165
\(86\) 0 0
\(87\) −4.92180e6 1.03432e7i −0.801322 1.68398i
\(88\) 0 0
\(89\) 9.31922e6i 1.40125i −0.713531 0.700623i \(-0.752905\pi\)
0.713531 0.700623i \(-0.247095\pi\)
\(90\) 0 0
\(91\) 1.53357e7i 2.13333i
\(92\) 0 0
\(93\) 1.13031e6 + 2.37534e6i 0.145716 + 0.306221i
\(94\) 0 0
\(95\) 5.48334e6 0.656165
\(96\) 0 0
\(97\) 965673. 0.107431 0.0537154 0.998556i \(-0.482894\pi\)
0.0537154 + 0.998556i \(0.482894\pi\)
\(98\) 0 0
\(99\) −696349. + 856704.i −0.0721280 + 0.0887376i
\(100\) 0 0
\(101\) 1.60909e7i 1.55402i −0.629490 0.777008i \(-0.716736\pi\)
0.629490 0.777008i \(-0.283264\pi\)
\(102\) 0 0
\(103\) 1.76166e6i 0.158852i 0.996841 + 0.0794259i \(0.0253087\pi\)
−0.996841 + 0.0794259i \(0.974691\pi\)
\(104\) 0 0
\(105\) −8.52553e6 + 4.05688e6i −0.718718 + 0.342003i
\(106\) 0 0
\(107\) −770387. −0.0607947 −0.0303973 0.999538i \(-0.509677\pi\)
−0.0303973 + 0.999538i \(0.509677\pi\)
\(108\) 0 0
\(109\) −1.64442e7 −1.21624 −0.608122 0.793843i \(-0.708077\pi\)
−0.608122 + 0.793843i \(0.708077\pi\)
\(110\) 0 0
\(111\) −1.07783e7 + 5.12887e6i −0.748032 + 0.355952i
\(112\) 0 0
\(113\) 7.88226e6i 0.513897i −0.966425 0.256948i \(-0.917283\pi\)
0.966425 0.256948i \(-0.0827171\pi\)
\(114\) 0 0
\(115\) 2.79513e6i 0.171380i
\(116\) 0 0
\(117\) −1.30977e7 + 1.61138e7i −0.756040 + 0.930141i
\(118\) 0 0
\(119\) 6.73180e6 0.366199
\(120\) 0 0
\(121\) −1.92323e7 −0.986923
\(122\) 0 0
\(123\) −1.41661e6 2.97700e6i −0.0686407 0.144248i
\(124\) 0 0
\(125\) 1.95312e6i 0.0894427i
\(126\) 0 0
\(127\) 1.47847e7i 0.640470i −0.947338 0.320235i \(-0.896238\pi\)
0.947338 0.320235i \(-0.103762\pi\)
\(128\) 0 0
\(129\) −4.83235e6 1.01552e7i −0.198196 0.416508i
\(130\) 0 0
\(131\) 1.54930e6 0.0602125 0.0301063 0.999547i \(-0.490415\pi\)
0.0301063 + 0.999547i \(0.490415\pi\)
\(132\) 0 0
\(133\) −7.08508e7 −2.61134
\(134\) 0 0
\(135\) 1.24230e7 + 3.01864e6i 0.434568 + 0.105595i
\(136\) 0 0
\(137\) 2.36832e7i 0.786899i −0.919346 0.393450i \(-0.871282\pi\)
0.919346 0.393450i \(-0.128718\pi\)
\(138\) 0 0
\(139\) 4.99958e7i 1.57900i 0.613751 + 0.789499i \(0.289660\pi\)
−0.613751 + 0.789499i \(0.710340\pi\)
\(140\) 0 0
\(141\) −2.37880e7 + 1.13196e7i −0.714647 + 0.340066i
\(142\) 0 0
\(143\) 4.79313e6 0.137070
\(144\) 0 0
\(145\) 3.06169e7 0.834013
\(146\) 0 0
\(147\) 7.53824e7 3.58708e7i 1.95731 0.931387i
\(148\) 0 0
\(149\) 2.27672e7i 0.563841i −0.959438 0.281921i \(-0.909028\pi\)
0.959438 0.281921i \(-0.0909715\pi\)
\(150\) 0 0
\(151\) 2.66407e7i 0.629689i −0.949143 0.314845i \(-0.898048\pi\)
0.949143 0.314845i \(-0.101952\pi\)
\(152\) 0 0
\(153\) −7.07339e6 5.74942e6i −0.159664 0.129779i
\(154\) 0 0
\(155\) −7.03126e6 −0.151660
\(156\) 0 0
\(157\) −5.26226e7 −1.08523 −0.542617 0.839980i \(-0.682567\pi\)
−0.542617 + 0.839980i \(0.682567\pi\)
\(158\) 0 0
\(159\) −2.08188e7 4.37507e7i −0.410740 0.863168i
\(160\) 0 0
\(161\) 3.61161e7i 0.682040i
\(162\) 0 0
\(163\) 4.98522e7i 0.901628i −0.892618 0.450814i \(-0.851134\pi\)
0.892618 0.450814i \(-0.148866\pi\)
\(164\) 0 0
\(165\) −1.26797e6 2.66463e6i −0.0219743 0.0461789i
\(166\) 0 0
\(167\) 8.34222e7 1.38603 0.693017 0.720921i \(-0.256281\pi\)
0.693017 + 0.720921i \(0.256281\pi\)
\(168\) 0 0
\(169\) 2.74059e7 0.436758
\(170\) 0 0
\(171\) 7.44460e7 + 6.05114e7i 1.13856 + 0.925445i
\(172\) 0 0
\(173\) 3.83060e7i 0.562478i −0.959638 0.281239i \(-0.909255\pi\)
0.959638 0.281239i \(-0.0907453\pi\)
\(174\) 0 0
\(175\) 2.52365e7i 0.355956i
\(176\) 0 0
\(177\) 1.02338e8 4.86977e7i 1.38717 0.660088i
\(178\) 0 0
\(179\) −1.12691e8 −1.46859 −0.734297 0.678828i \(-0.762488\pi\)
−0.734297 + 0.678828i \(0.762488\pi\)
\(180\) 0 0
\(181\) −6.48076e7 −0.812364 −0.406182 0.913792i \(-0.633140\pi\)
−0.406182 + 0.913792i \(0.633140\pi\)
\(182\) 0 0
\(183\) −4.42162e7 + 2.10403e7i −0.533338 + 0.253790i
\(184\) 0 0
\(185\) 3.19050e7i 0.370474i
\(186\) 0 0
\(187\) 2.10401e6i 0.0235289i
\(188\) 0 0
\(189\) −1.60519e8 3.90041e7i −1.72945 0.420237i
\(190\) 0 0
\(191\) 4.13575e7 0.429474 0.214737 0.976672i \(-0.431111\pi\)
0.214737 + 0.976672i \(0.431111\pi\)
\(192\) 0 0
\(193\) 2.40767e6 0.0241072 0.0120536 0.999927i \(-0.496163\pi\)
0.0120536 + 0.999927i \(0.496163\pi\)
\(194\) 0 0
\(195\) −2.38494e7 5.01194e7i −0.230333 0.484044i
\(196\) 0 0
\(197\) 1.73789e8i 1.61953i 0.586752 + 0.809767i \(0.300406\pi\)
−0.586752 + 0.809767i \(0.699594\pi\)
\(198\) 0 0
\(199\) 1.59487e8i 1.43463i 0.696750 + 0.717314i \(0.254629\pi\)
−0.696750 + 0.717314i \(0.745371\pi\)
\(200\) 0 0
\(201\) 1.86971e6 + 3.92920e6i 0.0162401 + 0.0341285i
\(202\) 0 0
\(203\) −3.95603e8 −3.31913
\(204\) 0 0
\(205\) 8.81224e6 0.0714410
\(206\) 0 0
\(207\) 3.08456e7 3.79487e7i 0.241711 0.297373i
\(208\) 0 0
\(209\) 2.21442e7i 0.167783i
\(210\) 0 0
\(211\) 2.41030e7i 0.176637i −0.996092 0.0883187i \(-0.971851\pi\)
0.996092 0.0883187i \(-0.0281494\pi\)
\(212\) 0 0
\(213\) 2.17841e8 1.03660e8i 1.54458 0.734991i
\(214\) 0 0
\(215\) 3.00604e7 0.206281
\(216\) 0 0
\(217\) 9.08515e7 0.603564
\(218\) 0 0
\(219\) 1.07169e8 5.09964e7i 0.689468 0.328084i
\(220\) 0 0
\(221\) 3.95745e7i 0.246628i
\(222\) 0 0
\(223\) 6.15469e7i 0.371655i −0.982582 0.185827i \(-0.940504\pi\)
0.982582 0.185827i \(-0.0594965\pi\)
\(224\) 0 0
\(225\) −2.15537e7 + 2.65171e7i −0.126149 + 0.155198i
\(226\) 0 0
\(227\) 1.46794e8 0.832950 0.416475 0.909147i \(-0.363265\pi\)
0.416475 + 0.909147i \(0.363265\pi\)
\(228\) 0 0
\(229\) 3.39135e8 1.86616 0.933079 0.359672i \(-0.117112\pi\)
0.933079 + 0.359672i \(0.117112\pi\)
\(230\) 0 0
\(231\) 1.63835e7 + 3.44300e7i 0.0874512 + 0.183778i
\(232\) 0 0
\(233\) 2.49003e8i 1.28961i −0.764347 0.644805i \(-0.776939\pi\)
0.764347 0.644805i \(-0.223061\pi\)
\(234\) 0 0
\(235\) 7.04152e7i 0.353939i
\(236\) 0 0
\(237\) 1.24794e8 + 2.62254e8i 0.608938 + 1.27968i
\(238\) 0 0
\(239\) −2.34396e8 −1.11060 −0.555299 0.831651i \(-0.687396\pi\)
−0.555299 + 0.831651i \(0.687396\pi\)
\(240\) 0 0
\(241\) 1.10391e8 0.508012 0.254006 0.967203i \(-0.418252\pi\)
0.254006 + 0.967203i \(0.418252\pi\)
\(242\) 0 0
\(243\) 1.35352e8 + 1.78077e8i 0.605120 + 0.796134i
\(244\) 0 0
\(245\) 2.23140e8i 0.969385i
\(246\) 0 0
\(247\) 4.16513e8i 1.75869i
\(248\) 0 0
\(249\) −4.05162e8 + 1.92797e8i −1.66315 + 0.791411i
\(250\) 0 0
\(251\) −3.46521e8 −1.38316 −0.691580 0.722300i \(-0.743085\pi\)
−0.691580 + 0.722300i \(0.743085\pi\)
\(252\) 0 0
\(253\) −1.12880e7 −0.0438223
\(254\) 0 0
\(255\) 2.20006e7 1.04690e7i 0.0830890 0.0395380i
\(256\) 0 0
\(257\) 1.60246e8i 0.588871i −0.955671 0.294435i \(-0.904868\pi\)
0.955671 0.294435i \(-0.0951316\pi\)
\(258\) 0 0
\(259\) 4.12247e8i 1.47438i
\(260\) 0 0
\(261\) 4.15677e8 + 3.37872e8i 1.44715 + 1.17628i
\(262\) 0 0
\(263\) 3.15723e8 1.07019 0.535096 0.844792i \(-0.320276\pi\)
0.535096 + 0.844792i \(0.320276\pi\)
\(264\) 0 0
\(265\) 1.29507e8 0.427496
\(266\) 0 0
\(267\) 1.87264e8 + 3.93534e8i 0.602093 + 1.26530i
\(268\) 0 0
\(269\) 5.48213e8i 1.71718i −0.512661 0.858591i \(-0.671340\pi\)
0.512661 0.858591i \(-0.328660\pi\)
\(270\) 0 0
\(271\) 3.67600e8i 1.12198i 0.827824 + 0.560988i \(0.189578\pi\)
−0.827824 + 0.560988i \(0.810422\pi\)
\(272\) 0 0
\(273\) 3.08160e8 + 6.47597e8i 0.916657 + 1.92635i
\(274\) 0 0
\(275\) 7.88761e6 0.0228708
\(276\) 0 0
\(277\) 3.52920e8 0.997693 0.498846 0.866690i \(-0.333757\pi\)
0.498846 + 0.866690i \(0.333757\pi\)
\(278\) 0 0
\(279\) −9.54616e7 7.75934e7i −0.263156 0.213900i
\(280\) 0 0
\(281\) 1.28285e7i 0.0344907i 0.999851 + 0.0172454i \(0.00548964\pi\)
−0.999851 + 0.0172454i \(0.994510\pi\)
\(282\) 0 0
\(283\) 5.85502e8i 1.53559i 0.640694 + 0.767796i \(0.278647\pi\)
−0.640694 + 0.767796i \(0.721353\pi\)
\(284\) 0 0
\(285\) −2.31552e8 + 1.10184e8i −0.592503 + 0.281943i
\(286\) 0 0
\(287\) −1.13864e8 −0.284314
\(288\) 0 0
\(289\) 3.92967e8 0.957665
\(290\) 0 0
\(291\) −4.07786e7 + 1.94046e7i −0.0970079 + 0.0461613i
\(292\) 0 0
\(293\) 2.73481e8i 0.635170i 0.948230 + 0.317585i \(0.102872\pi\)
−0.948230 + 0.317585i \(0.897128\pi\)
\(294\) 0 0
\(295\) 3.02932e8i 0.687017i
\(296\) 0 0
\(297\) 1.21906e7 5.01697e7i 0.0270009 0.111120i
\(298\) 0 0
\(299\) −2.12317e8 −0.459342
\(300\) 0 0
\(301\) −3.88413e8 −0.820939
\(302\) 0 0
\(303\) 3.23336e8 + 6.79489e8i 0.667736 + 1.40324i
\(304\) 0 0
\(305\) 1.30885e8i 0.264143i
\(306\) 0 0
\(307\) 4.53362e8i 0.894253i 0.894471 + 0.447127i \(0.147553\pi\)
−0.894471 + 0.447127i \(0.852447\pi\)
\(308\) 0 0
\(309\) −3.53994e7 7.43918e7i −0.0682561 0.143440i
\(310\) 0 0
\(311\) −8.02691e8 −1.51317 −0.756584 0.653897i \(-0.773133\pi\)
−0.756584 + 0.653897i \(0.773133\pi\)
\(312\) 0 0
\(313\) −6.97229e8 −1.28520 −0.642599 0.766202i \(-0.722144\pi\)
−0.642599 + 0.766202i \(0.722144\pi\)
\(314\) 0 0
\(315\) 2.78497e8 3.42629e8i 0.502035 0.617643i
\(316\) 0 0
\(317\) 5.73682e8i 1.01150i −0.862681 0.505748i \(-0.831217\pi\)
0.862681 0.505748i \(-0.168783\pi\)
\(318\) 0 0
\(319\) 1.23645e8i 0.213260i
\(320\) 0 0
\(321\) 3.25320e7 1.54804e7i 0.0548963 0.0261225i
\(322\) 0 0
\(323\) 1.82834e8 0.301890
\(324\) 0 0
\(325\) 1.48359e8 0.239730
\(326\) 0 0
\(327\) 6.94410e8 3.30436e8i 1.09824 0.522601i
\(328\) 0 0
\(329\) 9.09841e8i 1.40857i
\(330\) 0 0
\(331\) 8.91706e8i 1.35152i −0.737120 0.675762i \(-0.763815\pi\)
0.737120 0.675762i \(-0.236185\pi\)
\(332\) 0 0
\(333\) 3.52087e8 4.33166e8i 0.522511 0.642835i
\(334\) 0 0
\(335\) −1.16309e7 −0.0169026
\(336\) 0 0
\(337\) 1.07474e9 1.52968 0.764839 0.644221i \(-0.222818\pi\)
0.764839 + 0.644221i \(0.222818\pi\)
\(338\) 0 0
\(339\) 1.58389e8 + 3.32853e8i 0.220813 + 0.464038i
\(340\) 0 0
\(341\) 2.83954e7i 0.0387800i
\(342\) 0 0
\(343\) 1.55308e9i 2.07809i
\(344\) 0 0
\(345\) 5.61662e7 + 1.18033e8i 0.0736390 + 0.154752i
\(346\) 0 0
\(347\) −1.19579e9 −1.53639 −0.768193 0.640218i \(-0.778844\pi\)
−0.768193 + 0.640218i \(0.778844\pi\)
\(348\) 0 0
\(349\) 1.26415e9 1.59188 0.795939 0.605377i \(-0.206978\pi\)
0.795939 + 0.605377i \(0.206978\pi\)
\(350\) 0 0
\(351\) 2.29295e8 9.43648e8i 0.283022 1.16476i
\(352\) 0 0
\(353\) 9.52367e8i 1.15237i 0.817318 + 0.576186i \(0.195460\pi\)
−0.817318 + 0.576186i \(0.804540\pi\)
\(354\) 0 0
\(355\) 6.44833e8i 0.764977i
\(356\) 0 0
\(357\) −2.84272e8 + 1.35271e8i −0.330670 + 0.157350i
\(358\) 0 0
\(359\) 1.90430e7 0.0217223 0.0108611 0.999941i \(-0.496543\pi\)
0.0108611 + 0.999941i \(0.496543\pi\)
\(360\) 0 0
\(361\) −1.03042e9 −1.15276
\(362\) 0 0
\(363\) 8.12147e8 3.86461e8i 0.891171 0.424065i
\(364\) 0 0
\(365\) 3.17232e8i 0.341469i
\(366\) 0 0
\(367\) 1.91773e8i 0.202514i −0.994860 0.101257i \(-0.967714\pi\)
0.994860 0.101257i \(-0.0322865\pi\)
\(368\) 0 0
\(369\) 1.19642e8 + 9.72474e7i 0.123962 + 0.100759i
\(370\) 0 0
\(371\) −1.67337e9 −1.70131
\(372\) 0 0
\(373\) −9.06692e8 −0.904647 −0.452323 0.891854i \(-0.649405\pi\)
−0.452323 + 0.891854i \(0.649405\pi\)
\(374\) 0 0
\(375\) −3.92467e7 8.24769e7i −0.0384321 0.0807649i
\(376\) 0 0
\(377\) 2.32565e9i 2.23537i
\(378\) 0 0
\(379\) 4.04161e8i 0.381344i 0.981654 + 0.190672i \(0.0610667\pi\)
−0.981654 + 0.190672i \(0.938933\pi\)
\(380\) 0 0
\(381\) 2.97088e8 + 6.24330e8i 0.275200 + 0.578331i
\(382\) 0 0
\(383\) −1.70087e9 −1.54695 −0.773473 0.633829i \(-0.781482\pi\)
−0.773473 + 0.633829i \(0.781482\pi\)
\(384\) 0 0
\(385\) −1.01916e8 −0.0910189
\(386\) 0 0
\(387\) 4.08122e8 + 3.31731e8i 0.357933 + 0.290936i
\(388\) 0 0
\(389\) 2.31704e9i 1.99577i −0.0649941 0.997886i \(-0.520703\pi\)
0.0649941 0.997886i \(-0.479297\pi\)
\(390\) 0 0
\(391\) 9.31995e7i 0.0788488i
\(392\) 0 0
\(393\) −6.54242e7 + 3.11322e7i −0.0543707 + 0.0258723i
\(394\) 0 0
\(395\) −7.76299e8 −0.633781
\(396\) 0 0
\(397\) −1.68423e9 −1.35093 −0.675466 0.737391i \(-0.736057\pi\)
−0.675466 + 0.737391i \(0.736057\pi\)
\(398\) 0 0
\(399\) 2.99190e9 1.42370e9i 2.35799 1.12205i
\(400\) 0 0
\(401\) 1.56306e9i 1.21052i 0.796029 + 0.605259i \(0.206931\pi\)
−0.796029 + 0.605259i \(0.793069\pi\)
\(402\) 0 0
\(403\) 5.34093e8i 0.406489i
\(404\) 0 0
\(405\) −5.85258e8 + 1.22160e8i −0.437779 + 0.0913770i
\(406\) 0 0
\(407\) −1.28847e8 −0.0947313
\(408\) 0 0
\(409\) −1.70121e9 −1.22949 −0.614746 0.788725i \(-0.710741\pi\)
−0.614746 + 0.788725i \(0.710741\pi\)
\(410\) 0 0
\(411\) 4.75899e8 + 1.00010e9i 0.338118 + 0.710554i
\(412\) 0 0
\(413\) 3.91421e9i 2.73413i
\(414\) 0 0
\(415\) 1.19932e9i 0.823698i
\(416\) 0 0
\(417\) −1.00463e9 2.11123e9i −0.678470 1.42580i
\(418\) 0 0
\(419\) 1.94507e8 0.129177 0.0645887 0.997912i \(-0.479426\pi\)
0.0645887 + 0.997912i \(0.479426\pi\)
\(420\) 0 0
\(421\) −6.02035e8 −0.393219 −0.196610 0.980482i \(-0.562993\pi\)
−0.196610 + 0.980482i \(0.562993\pi\)
\(422\) 0 0
\(423\) 7.77066e8 9.56009e8i 0.499191 0.614145i
\(424\) 0 0
\(425\) 6.51242e7i 0.0411510i
\(426\) 0 0
\(427\) 1.69117e9i 1.05121i
\(428\) 0 0
\(429\) −2.02405e8 + 9.63146e7i −0.123771 + 0.0588968i
\(430\) 0 0
\(431\) 2.04141e9 1.22817 0.614086 0.789239i \(-0.289525\pi\)
0.614086 + 0.789239i \(0.289525\pi\)
\(432\) 0 0
\(433\) 1.25079e9 0.740416 0.370208 0.928949i \(-0.379286\pi\)
0.370208 + 0.928949i \(0.379286\pi\)
\(434\) 0 0
\(435\) −1.29289e9 + 6.15225e8i −0.753097 + 0.358362i
\(436\) 0 0
\(437\) 9.80905e8i 0.562266i
\(438\) 0 0
\(439\) 2.45450e9i 1.38464i −0.721590 0.692321i \(-0.756588\pi\)
0.721590 0.692321i \(-0.243412\pi\)
\(440\) 0 0
\(441\) −2.46246e9 + 3.02952e9i −1.36721 + 1.68205i
\(442\) 0 0
\(443\) 4.11036e8 0.224629 0.112315 0.993673i \(-0.464174\pi\)
0.112315 + 0.993673i \(0.464174\pi\)
\(444\) 0 0
\(445\) −1.16490e9 −0.626657
\(446\) 0 0
\(447\) 4.57491e8 + 9.61415e8i 0.242274 + 0.509137i
\(448\) 0 0
\(449\) 1.03090e9i 0.537470i −0.963214 0.268735i \(-0.913394\pi\)
0.963214 0.268735i \(-0.0866055\pi\)
\(450\) 0 0
\(451\) 3.55878e7i 0.0182677i
\(452\) 0 0
\(453\) 5.35327e8 + 1.12499e9i 0.270567 + 0.568597i
\(454\) 0 0
\(455\) −1.91696e9 −0.954053
\(456\) 0 0
\(457\) −1.37832e9 −0.675526 −0.337763 0.941231i \(-0.609670\pi\)
−0.337763 + 0.941231i \(0.609670\pi\)
\(458\) 0 0
\(459\) 4.14227e8 + 1.00652e8i 0.199937 + 0.0485824i
\(460\) 0 0
\(461\) 1.44371e9i 0.686321i 0.939277 + 0.343161i \(0.111497\pi\)
−0.939277 + 0.343161i \(0.888503\pi\)
\(462\) 0 0
\(463\) 1.41936e9i 0.664596i −0.943174 0.332298i \(-0.892176\pi\)
0.943174 0.332298i \(-0.107824\pi\)
\(464\) 0 0
\(465\) 2.96917e8 1.41288e8i 0.136946 0.0651660i
\(466\) 0 0
\(467\) 1.96275e9 0.891777 0.445889 0.895088i \(-0.352888\pi\)
0.445889 + 0.895088i \(0.352888\pi\)
\(468\) 0 0
\(469\) 1.50283e8 0.0672676
\(470\) 0 0
\(471\) 2.22216e9 1.05742e9i 0.979945 0.466308i
\(472\) 0 0
\(473\) 1.21398e8i 0.0527468i
\(474\) 0 0
\(475\) 6.85418e8i 0.293446i
\(476\) 0 0
\(477\) 1.75828e9 + 1.42917e9i 0.741779 + 0.602935i
\(478\) 0 0
\(479\) 2.17684e9 0.905010 0.452505 0.891762i \(-0.350531\pi\)
0.452505 + 0.891762i \(0.350531\pi\)
\(480\) 0 0
\(481\) −2.42350e9 −0.992966
\(482\) 0 0
\(483\) −7.25728e8 1.52512e9i −0.293062 0.615868i
\(484\) 0 0
\(485\) 1.20709e8i 0.0480446i
\(486\) 0 0
\(487\) 2.14419e9i 0.841226i 0.907240 + 0.420613i \(0.138185\pi\)
−0.907240 + 0.420613i \(0.861815\pi\)
\(488\) 0 0
\(489\) 1.00175e9 + 2.10517e9i 0.387415 + 0.814151i
\(490\) 0 0
\(491\) −1.00071e9 −0.381524 −0.190762 0.981636i \(-0.561096\pi\)
−0.190762 + 0.981636i \(0.561096\pi\)
\(492\) 0 0
\(493\) 1.02088e9 0.383715
\(494\) 0 0
\(495\) 1.07088e8 + 8.70436e7i 0.0396847 + 0.0322566i
\(496\) 0 0
\(497\) 8.33195e9i 3.04438i
\(498\) 0 0
\(499\) 5.29357e8i 0.190720i −0.995443 0.0953601i \(-0.969600\pi\)
0.995443 0.0953601i \(-0.0304003\pi\)
\(500\) 0 0
\(501\) −3.52277e9 + 1.67631e9i −1.25156 + 0.595557i
\(502\) 0 0
\(503\) −8.79475e8 −0.308131 −0.154066 0.988061i \(-0.549237\pi\)
−0.154066 + 0.988061i \(0.549237\pi\)
\(504\) 0 0
\(505\) −2.01136e9 −0.694977
\(506\) 0 0
\(507\) −1.15730e9 + 5.50704e8i −0.394384 + 0.187668i
\(508\) 0 0
\(509\) 1.10437e9i 0.371196i 0.982626 + 0.185598i \(0.0594221\pi\)
−0.982626 + 0.185598i \(0.940578\pi\)
\(510\) 0 0
\(511\) 4.09898e9i 1.35895i
\(512\) 0 0
\(513\) −4.35965e9 1.05934e9i −1.42574 0.346438i
\(514\) 0 0
\(515\) 2.20208e8 0.0710407
\(516\) 0 0
\(517\) −2.84369e8 −0.0905034
\(518\) 0 0
\(519\) 7.69733e8 + 1.61759e9i 0.241688 + 0.507906i
\(520\) 0 0
\(521\) 1.09267e9i 0.338497i 0.985573 + 0.169249i \(0.0541341\pi\)
−0.985573 + 0.169249i \(0.945866\pi\)
\(522\) 0 0
\(523\) 4.10862e9i 1.25586i 0.778271 + 0.627929i \(0.216097\pi\)
−0.778271 + 0.627929i \(0.783903\pi\)
\(524\) 0 0
\(525\) 5.07110e8 + 1.06569e9i 0.152948 + 0.321421i
\(526\) 0 0
\(527\) −2.34447e8 −0.0697763
\(528\) 0 0
\(529\) −2.90481e9 −0.853145
\(530\) 0 0
\(531\) −3.34300e9 + 4.11283e9i −0.968959 + 1.19209i
\(532\) 0 0
\(533\) 6.69375e8i 0.191481i
\(534\) 0 0
\(535\) 9.62983e7i 0.0271882i
\(536\) 0 0
\(537\) 4.75872e9 2.26444e9i 1.32611 0.631031i
\(538\) 0 0
\(539\) 9.01141e8 0.247875
\(540\) 0 0
\(541\) 3.93556e9 1.06860 0.534301 0.845294i \(-0.320575\pi\)
0.534301 + 0.845294i \(0.320575\pi\)
\(542\) 0 0
\(543\) 2.73670e9 1.30226e9i 0.733548 0.349060i
\(544\) 0 0
\(545\) 2.05553e9i 0.543921i
\(546\) 0 0
\(547\) 2.60747e9i 0.681183i 0.940211 + 0.340591i \(0.110627\pi\)
−0.940211 + 0.340591i \(0.889373\pi\)
\(548\) 0 0
\(549\) 1.44438e9 1.77699e9i 0.372544 0.458334i
\(550\) 0 0
\(551\) −1.07445e10 −2.73625
\(552\) 0 0
\(553\) 1.00306e10 2.52226
\(554\) 0 0
\(555\) 6.41109e8 + 1.34729e9i 0.159187 + 0.334530i
\(556\) 0 0
\(557\) 7.17366e9i 1.75893i −0.475967 0.879463i \(-0.657902\pi\)
0.475967 0.879463i \(-0.342098\pi\)
\(558\) 0 0
\(559\) 2.28338e9i 0.552888i
\(560\) 0 0
\(561\) −4.22786e7 8.88484e7i −0.0101100 0.0212461i
\(562\) 0 0
\(563\) −1.65421e9 −0.390670 −0.195335 0.980737i \(-0.562579\pi\)
−0.195335 + 0.980737i \(0.562579\pi\)
\(564\) 0 0
\(565\) −9.85282e8 −0.229822
\(566\) 0 0
\(567\) 7.56217e9 1.57844e9i 1.74223 0.363653i
\(568\) 0 0
\(569\) 2.33458e9i 0.531270i −0.964074 0.265635i \(-0.914418\pi\)
0.964074 0.265635i \(-0.0855815\pi\)
\(570\) 0 0
\(571\) 1.86071e9i 0.418267i −0.977887 0.209133i \(-0.932936\pi\)
0.977887 0.209133i \(-0.0670643\pi\)
\(572\) 0 0
\(573\) −1.74645e9 + 8.31050e8i −0.387806 + 0.184538i
\(574\) 0 0
\(575\) −3.49391e8 −0.0766433
\(576\) 0 0
\(577\) 5.80765e9 1.25859 0.629296 0.777166i \(-0.283343\pi\)
0.629296 + 0.777166i \(0.283343\pi\)
\(578\) 0 0
\(579\) −1.01672e8 + 4.83806e7i −0.0217683 + 0.0103585i
\(580\) 0 0
\(581\) 1.54966e10i 3.27807i
\(582\) 0 0
\(583\) 5.23008e8i 0.109312i
\(584\) 0 0
\(585\) 2.01423e9 + 1.63721e9i 0.415972 + 0.338111i
\(586\) 0 0
\(587\) −5.36539e9 −1.09488 −0.547441 0.836844i \(-0.684398\pi\)
−0.547441 + 0.836844i \(0.684398\pi\)
\(588\) 0 0
\(589\) 2.46751e9 0.497571
\(590\) 0 0
\(591\) −3.49217e9 7.33878e9i −0.695887 1.46241i
\(592\) 0 0
\(593\) 7.09204e9i 1.39662i 0.715794 + 0.698312i \(0.246065\pi\)
−0.715794 + 0.698312i \(0.753935\pi\)
\(594\) 0 0
\(595\) 8.41475e8i 0.163769i
\(596\) 0 0
\(597\) −3.20478e9 6.73484e9i −0.616437 1.29544i
\(598\) 0 0
\(599\) 9.80130e8 0.186333 0.0931665 0.995651i \(-0.470301\pi\)
0.0931665 + 0.995651i \(0.470301\pi\)
\(600\) 0 0
\(601\) 2.89051e9 0.543142 0.271571 0.962418i \(-0.412457\pi\)
0.271571 + 0.962418i \(0.412457\pi\)
\(602\) 0 0
\(603\) −1.57909e8 1.28352e8i −0.0293290 0.0238392i
\(604\) 0 0
\(605\) 2.40404e9i 0.441365i
\(606\) 0 0
\(607\) 3.14712e9i 0.571153i −0.958356 0.285576i \(-0.907815\pi\)
0.958356 0.285576i \(-0.0921851\pi\)
\(608\) 0 0
\(609\) 1.67056e10 7.94938e9i 2.99710 1.42617i
\(610\) 0 0
\(611\) −5.34872e9 −0.948649
\(612\) 0 0
\(613\) −9.58526e9 −1.68071 −0.840354 0.542038i \(-0.817653\pi\)
−0.840354 + 0.542038i \(0.817653\pi\)
\(614\) 0 0
\(615\) −3.72125e8 + 1.77076e8i −0.0645098 + 0.0306971i
\(616\) 0 0
\(617\) 6.12833e9i 1.05037i 0.850987 + 0.525187i \(0.176005\pi\)
−0.850987 + 0.525187i \(0.823995\pi\)
\(618\) 0 0
\(619\) 6.74204e9i 1.14255i 0.820760 + 0.571274i \(0.193550\pi\)
−0.820760 + 0.571274i \(0.806450\pi\)
\(620\) 0 0
\(621\) −5.39999e8 + 2.22233e9i −0.0904841 + 0.372381i
\(622\) 0 0
\(623\) 1.50518e10 2.49391
\(624\) 0 0
\(625\) 2.44141e8 0.0400000
\(626\) 0 0
\(627\) 4.44974e8 + 9.35111e8i 0.0720938 + 0.151505i
\(628\) 0 0
\(629\) 1.06383e9i 0.170449i
\(630\) 0 0
\(631\) 1.01052e9i 0.160119i −0.996790 0.0800596i \(-0.974489\pi\)
0.996790 0.0800596i \(-0.0255111\pi\)
\(632\) 0 0
\(633\) 4.84333e8 + 1.01783e9i 0.0758982 + 0.159500i
\(634\) 0 0
\(635\) −1.84809e9 −0.286427
\(636\) 0 0
\(637\) 1.69497e10 2.59820
\(638\) 0 0
\(639\) −7.11605e9 + 8.75474e9i −1.07891 + 1.32736i
\(640\) 0 0
\(641\) 9.57550e8i 0.143601i −0.997419 0.0718007i \(-0.977125\pi\)
0.997419 0.0718007i \(-0.0228745\pi\)
\(642\) 0 0
\(643\) 1.30492e10i 1.93573i 0.251466 + 0.967866i \(0.419087\pi\)
−0.251466 + 0.967866i \(0.580913\pi\)
\(644\) 0 0
\(645\) −1.26940e9 + 6.04043e8i −0.186268 + 0.0886358i
\(646\) 0 0
\(647\) 1.01818e10 1.47796 0.738978 0.673729i \(-0.235309\pi\)
0.738978 + 0.673729i \(0.235309\pi\)
\(648\) 0 0
\(649\) 1.22338e9 0.175672
\(650\) 0 0
\(651\) −3.83649e9 + 1.82560e9i −0.545005 + 0.259342i
\(652\) 0 0
\(653\) 7.76251e8i 0.109095i −0.998511 0.0545476i \(-0.982628\pi\)
0.998511 0.0545476i \(-0.0173717\pi\)
\(654\) 0 0
\(655\) 1.93663e8i 0.0269279i
\(656\) 0 0
\(657\) −3.50081e9 + 4.30697e9i −0.481603 + 0.592507i
\(658\) 0 0
\(659\) −4.11575e9 −0.560210 −0.280105 0.959969i \(-0.590369\pi\)
−0.280105 + 0.959969i \(0.590369\pi\)
\(660\) 0 0
\(661\) −1.03507e10 −1.39400 −0.697000 0.717071i \(-0.745482\pi\)
−0.697000 + 0.717071i \(0.745482\pi\)
\(662\) 0 0
\(663\) −7.95223e8 1.67116e9i −0.105972 0.222700i
\(664\) 0 0
\(665\) 8.85634e9i 1.16783i
\(666\) 0 0
\(667\) 5.47699e9i 0.714664i
\(668\) 0 0
\(669\) 1.23674e9 + 2.59901e9i 0.159694 + 0.335596i
\(670\) 0 0
\(671\) −5.28572e8 −0.0675423
\(672\) 0 0
\(673\) 5.33940e9 0.675211 0.337605 0.941288i \(-0.390383\pi\)
0.337605 + 0.941288i \(0.390383\pi\)
\(674\) 0 0
\(675\) 3.77330e8 1.55287e9i 0.0472235 0.194345i
\(676\) 0 0
\(677\) 2.48269e9i 0.307512i −0.988109 0.153756i \(-0.950863\pi\)
0.988109 0.153756i \(-0.0491369\pi\)
\(678\) 0 0
\(679\) 1.55969e9i 0.191203i
\(680\) 0 0
\(681\) −6.19886e9 + 2.94973e9i −0.752136 + 0.357905i
\(682\) 0 0
\(683\) −4.31053e9 −0.517676 −0.258838 0.965921i \(-0.583340\pi\)
−0.258838 + 0.965921i \(0.583340\pi\)
\(684\) 0 0
\(685\) −2.96041e9 −0.351912
\(686\) 0 0
\(687\) −1.43210e10 + 6.81469e9i −1.68510 + 0.801858i
\(688\) 0 0
\(689\) 9.83732e9i 1.14580i
\(690\) 0 0
\(691\) 8.48943e9i 0.978826i 0.872052 + 0.489413i \(0.162789\pi\)
−0.872052 + 0.489413i \(0.837211\pi\)
\(692\) 0 0
\(693\) −1.38369e9 1.12470e9i −0.157933 0.128372i
\(694\) 0 0
\(695\) 6.24948e9 0.706150
\(696\) 0 0
\(697\) 2.93832e8 0.0328688
\(698\) 0 0
\(699\) 5.00354e9 + 1.05149e10i 0.554124 + 1.16449i
\(700\) 0 0
\(701\) 1.03504e10i 1.13487i 0.823418 + 0.567435i \(0.192064\pi\)
−0.823418 + 0.567435i \(0.807936\pi\)
\(702\) 0 0
\(703\) 1.11965e10i 1.21546i
\(704\) 0 0
\(705\) 1.41495e9 + 2.97350e9i 0.152082 + 0.319600i
\(706\) 0 0
\(707\) 2.59890e10 2.76580
\(708\) 0 0
\(709\) −6.78725e9 −0.715208 −0.357604 0.933873i \(-0.616406\pi\)
−0.357604 + 0.933873i \(0.616406\pi\)
\(710\) 0 0
\(711\) −1.05396e10 8.56684e9i −1.09972 0.893876i
\(712\) 0 0
\(713\) 1.25781e9i 0.129957i
\(714\) 0 0
\(715\) 5.99141e8i 0.0612996i
\(716\) 0 0
\(717\) 9.89810e9 4.71002e9i 1.00285 0.477206i
\(718\) 0 0
\(719\) 5.72358e9 0.574271 0.287135 0.957890i \(-0.407297\pi\)
0.287135 + 0.957890i \(0.407297\pi\)
\(720\) 0 0
\(721\) −2.84532e9 −0.282721
\(722\) 0 0
\(723\) −4.66161e9 + 2.21823e9i −0.458724 + 0.218285i
\(724\) 0 0
\(725\) 3.82711e9i 0.372982i
\(726\) 0 0
\(727\) 9.50328e9i 0.917282i −0.888622 0.458641i \(-0.848336\pi\)
0.888622 0.458641i \(-0.151664\pi\)
\(728\) 0 0
\(729\) −9.29399e9 4.80007e9i −0.888497 0.458882i
\(730\) 0 0
\(731\) 1.00232e9 0.0949065
\(732\) 0 0
\(733\) 7.87003e9 0.738096 0.369048 0.929410i \(-0.379684\pi\)
0.369048 + 0.929410i \(0.379684\pi\)
\(734\) 0 0
\(735\) −4.48385e9 9.42280e9i −0.416529 0.875335i
\(736\) 0 0
\(737\) 4.69707e7i 0.00432206i
\(738\) 0 0
\(739\) 5.91622e9i 0.539248i −0.962966 0.269624i \(-0.913101\pi\)
0.962966 0.269624i \(-0.0868995\pi\)
\(740\) 0 0
\(741\) 8.36956e9 + 1.75886e10i 0.755681 + 1.58806i
\(742\) 0 0
\(743\) −1.35359e10 −1.21067 −0.605336 0.795970i \(-0.706961\pi\)
−0.605336 + 0.795970i \(0.706961\pi\)
\(744\) 0 0
\(745\) −2.84590e9 −0.252158
\(746\) 0 0
\(747\) 1.32351e10 1.62829e10i 1.16173 1.42926i
\(748\) 0 0
\(749\) 1.24428e9i 0.108201i
\(750\) 0 0
\(751\) 6.39015e7i 0.00550517i −0.999996 0.00275259i \(-0.999124\pi\)
0.999996 0.00275259i \(-0.000876177\pi\)
\(752\) 0 0
\(753\) 1.46330e10 6.96312e9i 1.24896 0.594321i
\(754\) 0 0
\(755\) −3.33009e9 −0.281606
\(756\) 0 0
\(757\) 1.43927e10 1.20589 0.602945 0.797783i \(-0.293994\pi\)
0.602945 + 0.797783i \(0.293994\pi\)
\(758\) 0 0
\(759\) 4.76671e8 2.26825e8i 0.0395706 0.0188297i
\(760\) 0 0
\(761\) 1.66521e10i 1.36969i 0.728688 + 0.684846i \(0.240131\pi\)
−0.728688 + 0.684846i \(0.759869\pi\)
\(762\) 0 0
\(763\) 2.65597e10i 2.16465i
\(764\) 0 0
\(765\) −7.18677e8 + 8.84174e8i −0.0580388 + 0.0714040i
\(766\) 0 0
\(767\) 2.30106e10 1.84138
\(768\) 0 0
\(769\) −1.01628e10 −0.805879 −0.402939 0.915227i \(-0.632011\pi\)
−0.402939 + 0.915227i \(0.632011\pi\)
\(770\) 0 0
\(771\) 3.22003e9 + 6.76688e9i 0.253028 + 0.531738i
\(772\) 0 0
\(773\) 2.25356e10i 1.75485i −0.479711 0.877426i \(-0.659259\pi\)
0.479711 0.877426i \(-0.340741\pi\)
\(774\) 0 0
\(775\) 8.78907e8i 0.0678246i
\(776\) 0 0
\(777\) −8.28383e9 1.74084e10i −0.633516 1.33133i
\(778\) 0 0
\(779\) −3.09251e9 −0.234385
\(780\) 0 0
\(781\) 2.60413e9 0.195607
\(782\) 0 0
\(783\) −2.43426e10 5.91496e9i −1.81218 0.440338i
\(784\) 0 0
\(785\) 6.57783e9i 0.485332i
\(786\) 0 0
\(787\) 2.81862e6i 0.000206122i −1.00000 0.000103061i \(-0.999967\pi\)
1.00000 0.000103061i \(-3.28054e-5\pi\)
\(788\) 0 0
\(789\) −1.33324e10 + 6.34424e9i −0.966361 + 0.459844i
\(790\) 0 0
\(791\) 1.27309e10 0.914623
\(792\) 0 0
\(793\) −9.94198e9 −0.707973
\(794\) 0 0
\(795\) −5.46884e9 + 2.60235e9i −0.386020 + 0.183688i
\(796\) 0 0
\(797\) 2.60269e10i 1.82103i −0.413472 0.910517i \(-0.635684\pi\)
0.413472 0.910517i \(-0.364316\pi\)
\(798\) 0 0
\(799\) 2.34789e9i 0.162841i
\(800\) 0 0
\(801\) −1.58156e10 1.28553e10i −1.08736 0.883828i
\(802\) 0 0
\(803\) 1.28113e9 0.0873147
\(804\) 0 0
\(805\) 4.51451e9 0.305018
\(806\) 0 0
\(807\) 1.10160e10 + 2.31500e10i 0.737845 + 1.55058i
\(808\) 0 0
\(809\) 2.65307e9i 0.176168i −0.996113 0.0880842i \(-0.971926\pi\)
0.996113 0.0880842i \(-0.0280745\pi\)
\(810\) 0 0
\(811\) 1.63597e10i 1.07697i −0.842637 0.538483i \(-0.818998\pi\)
0.842637 0.538483i \(-0.181002\pi\)
\(812\) 0 0
\(813\) −7.38668e9 1.55231e10i −0.482095 1.01312i
\(814\) 0 0
\(815\) −6.23152e9 −0.403220
\(816\) 0 0
\(817\) −1.05492e10 −0.676773
\(818\) 0 0
\(819\) −2.60260e10 2.11546e10i −1.65544 1.34558i
\(820\) 0 0
\(821\) 1.58613e10i 1.00032i 0.865933 + 0.500160i \(0.166725\pi\)
−0.865933 + 0.500160i \(0.833275\pi\)
\(822\) 0 0
\(823\) 1.96724e9i 0.123015i 0.998107 + 0.0615075i \(0.0195908\pi\)
−0.998107 + 0.0615075i \(0.980409\pi\)
\(824\) 0 0
\(825\) −3.33079e8 + 1.58496e8i −0.0206518 + 0.00982720i
\(826\) 0 0
\(827\) 2.14499e9 0.131873 0.0659365 0.997824i \(-0.478997\pi\)
0.0659365 + 0.997824i \(0.478997\pi\)
\(828\) 0 0
\(829\) 1.64960e10 1.00563 0.502815 0.864394i \(-0.332298\pi\)
0.502815 + 0.864394i \(0.332298\pi\)
\(830\) 0 0
\(831\) −1.49032e10 + 7.09168e9i −0.900896 + 0.428692i
\(832\) 0 0
\(833\) 7.44029e9i 0.445997i
\(834\) 0 0
\(835\) 1.04278e10i 0.619853i
\(836\) 0 0
\(837\) 5.59036e9 + 1.35839e9i 0.329534 + 0.0800729i
\(838\) 0 0
\(839\) 1.19250e10 0.697093 0.348547 0.937291i \(-0.386675\pi\)
0.348547 + 0.937291i \(0.386675\pi\)
\(840\) 0 0
\(841\) −4.27433e10 −2.47789
\(842\) 0 0
\(843\) −2.57779e8 5.41722e8i −0.0148201 0.0311444i
\(844\) 0 0
\(845\) 3.42574e9i 0.195324i
\(846\) 0 0
\(847\) 3.10628e10i 1.75650i
\(848\) 0 0
\(849\) −1.17653e10 2.47247e10i −0.659819 1.38661i
\(850\) 0 0
\(851\) 5.70742e9 0.317458
\(852\) 0 0
\(853\) −2.38426e10 −1.31532 −0.657660 0.753315i \(-0.728454\pi\)
−0.657660 + 0.753315i \(0.728454\pi\)
\(854\) 0 0
\(855\) 7.56392e9 9.30575e9i 0.413872 0.509178i
\(856\) 0 0
\(857\) 2.02537e10i 1.09919i 0.835432 + 0.549594i \(0.185217\pi\)
−0.835432 + 0.549594i \(0.814783\pi\)
\(858\) 0 0
\(859\) 2.37832e10i 1.28025i 0.768271 + 0.640125i \(0.221117\pi\)
−0.768271 + 0.640125i \(0.778883\pi\)
\(860\) 0 0
\(861\) 4.80826e9 2.28801e9i 0.256730 0.122165i
\(862\) 0 0
\(863\) 5.90368e9 0.312669 0.156335 0.987704i \(-0.450032\pi\)
0.156335 + 0.987704i \(0.450032\pi\)
\(864\) 0 0
\(865\) −4.78825e9 −0.251548
\(866\) 0 0
\(867\) −1.65943e10 + 7.89640e9i −0.864752 + 0.411493i
\(868\) 0 0
\(869\) 3.13505e9i 0.162060i
\(870\) 0 0
\(871\) 8.83477e8i 0.0453035i
\(872\) 0 0
\(873\) 1.33208e9 1.63884e9i 0.0677613 0.0833654i
\(874\) 0 0
\(875\) −3.15456e9 −0.159188
\(876\) 0 0
\(877\) −1.26583e10 −0.633689 −0.316844 0.948478i \(-0.602623\pi\)
−0.316844 + 0.948478i \(0.602623\pi\)
\(878\) 0 0
\(879\) −5.49541e9 1.15486e10i −0.272922 0.573546i
\(880\) 0 0
\(881\) 1.61475e10i 0.795588i 0.917475 + 0.397794i \(0.130224\pi\)
−0.917475 + 0.397794i \(0.869776\pi\)
\(882\) 0 0
\(883\) 7.86495e9i 0.384445i 0.981351 + 0.192222i \(0.0615695\pi\)
−0.981351 + 0.192222i \(0.938431\pi\)
\(884\) 0 0
\(885\) −6.08721e9 1.27923e10i −0.295200 0.620363i
\(886\) 0 0
\(887\) −7.42118e9 −0.357059 −0.178530 0.983935i \(-0.557134\pi\)
−0.178530 + 0.983935i \(0.557134\pi\)
\(888\) 0 0
\(889\) 2.38793e10 1.13990
\(890\) 0 0
\(891\) 4.93338e8 + 2.36354e9i 0.0233654 + 0.111941i
\(892\) 0 0
\(893\) 2.47111e10i 1.16121i
\(894\) 0 0
\(895\) 1.40863e10i 0.656775i
\(896\) 0 0
\(897\) 8.96576e9 4.26637e9i 0.414776 0.197372i
\(898\) 0 0
\(899\) 1.37776e10 0.632434
\(900\) 0 0
\(901\) 4.31822e9 0.196684
\(902\) 0 0
\(903\) 1.64020e10 7.80490e9i 0.741291 0.352744i
\(904\) 0 0
\(905\) 8.10095e9i 0.363300i
\(906\) 0 0
\(907\) 8.93722e9i 0.397720i 0.980028 + 0.198860i \(0.0637238\pi\)
−0.980028 + 0.198860i \(0.936276\pi\)
\(908\) 0 0
\(909\) −2.73078e10 2.21964e10i −1.20590 0.980186i
\(910\) 0 0
\(911\) 3.26257e9 0.142970 0.0714852 0.997442i \(-0.477226\pi\)
0.0714852 + 0.997442i \(0.477226\pi\)
\(912\) 0 0
\(913\) −4.84341e9 −0.210622
\(914\) 0 0
\(915\) 2.63004e9 + 5.52703e9i 0.113498 + 0.238516i
\(916\) 0 0
\(917\) 2.50233e9i 0.107165i
\(918\) 0 0
\(919\) 1.09530e10i 0.465508i 0.972536 + 0.232754i \(0.0747738\pi\)
−0.972536 + 0.232754i \(0.925226\pi\)
\(920\) 0 0
\(921\) −9.11000e9 1.91446e10i −0.384246 0.807492i
\(922\) 0 0
\(923\) 4.89814e10 2.05034
\(924\) 0 0
\(925\) −3.98812e9 −0.165681
\(926\) 0 0
\(927\) 2.98970e9 + 2.43010e9i 0.123268 + 0.100195i
\(928\) 0 0
\(929\) 8.03507e9i 0.328802i 0.986394 + 0.164401i \(0.0525692\pi\)
−0.986394 + 0.164401i \(0.947431\pi\)
\(930\) 0 0
\(931\) 7.83074e10i 3.18038i
\(932\) 0 0
\(933\) 3.38962e10 1.61295e10i 1.36636 0.650183i
\(934\) 0 0
\(935\) 2.63001e8 0.0105224
\(936\) 0 0
\(937\) −2.30635e10 −0.915876 −0.457938 0.888984i \(-0.651412\pi\)
−0.457938 + 0.888984i \(0.651412\pi\)
\(938\) 0 0
\(939\) 2.94427e10 1.40103e10i 1.16051 0.552229i
\(940\) 0 0
\(941\) 3.74186e10i 1.46394i −0.681336 0.731971i \(-0.738601\pi\)
0.681336 0.731971i \(-0.261399\pi\)
\(942\) 0 0
\(943\) 1.57640e9i 0.0612177i
\(944\) 0 0
\(945\) −4.87551e9 + 2.00648e10i −0.187936 + 0.773435i
\(946\) 0 0
\(947\) −3.38155e9 −0.129387 −0.0646936 0.997905i \(-0.520607\pi\)
−0.0646936 + 0.997905i \(0.520607\pi\)
\(948\) 0 0
\(949\) 2.40968e10 0.915226
\(950\) 0 0
\(951\) 1.15278e10 + 2.42255e10i 0.434623 + 0.913359i
\(952\) 0 0
\(953\) 1.32817e10i 0.497081i 0.968621 + 0.248541i \(0.0799510\pi\)
−0.968621 + 0.248541i \(0.920049\pi\)
\(954\) 0 0
\(955\) 5.16968e9i 0.192067i
\(956\) 0 0
\(957\) 2.48456e9 + 5.22130e9i 0.0916342 + 0.192569i
\(958\) 0 0
\(959\) 3.82516e10 1.40051
\(960\) 0 0
\(961\) 2.43485e10 0.884996
\(962\) 0 0
\(963\) −1.06270e9 + 1.30742e9i −0.0383458 + 0.0471761i
\(964\) 0 0
\(965\) 3.00959e8i 0.0107811i
\(966\) 0 0
\(967\) 2.27063e10i 0.807520i 0.914865 + 0.403760i \(0.132297\pi\)
−0.914865 + 0.403760i \(0.867703\pi\)
\(968\) 0 0
\(969\) −7.72076e9 + 3.67393e9i −0.272600 + 0.129717i
\(970\) 0 0
\(971\) −2.81831e10 −0.987920 −0.493960 0.869485i \(-0.664451\pi\)
−0.493960 + 0.869485i \(0.664451\pi\)
\(972\) 0 0
\(973\) −8.07500e10 −2.81027
\(974\) 0 0
\(975\) −6.26492e9 + 2.98117e9i −0.216471 + 0.103008i
\(976\) 0 0
\(977\) 3.61046e10i 1.23860i −0.785154 0.619301i \(-0.787416\pi\)
0.785154 0.619301i \(-0.212584\pi\)
\(978\) 0 0
\(979\) 4.70441e9i 0.160238i
\(980\) 0 0
\(981\) −2.26838e10 + 2.79074e10i −0.767139 + 0.943795i
\(982\) 0 0
\(983\) −1.28740e10 −0.432292 −0.216146 0.976361i \(-0.569349\pi\)
−0.216146 + 0.976361i \(0.569349\pi\)
\(984\) 0 0
\(985\) 2.17236e10 0.724277
\(986\) 0 0
\(987\) −1.82826e10 3.84209e10i −0.605242 1.27191i
\(988\) 0 0
\(989\) 5.37745e9i 0.176762i
\(990\) 0 0
\(991\) 4.85482e10i 1.58458i 0.610142 + 0.792292i \(0.291112\pi\)
−0.610142 + 0.792292i \(0.708888\pi\)
\(992\) 0 0
\(993\) 1.79182e10 + 3.76551e10i 0.580728 + 1.22040i
\(994\) 0 0
\(995\) 1.99359e10 0.641585
\(996\) 0 0
\(997\) −2.65563e10 −0.848661 −0.424331 0.905507i \(-0.639491\pi\)
−0.424331 + 0.905507i \(0.639491\pi\)
\(998\) 0 0
\(999\) −6.16382e9 + 2.53668e10i −0.195601 + 0.804981i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.8.h.b.191.6 yes 36
3.2 odd 2 inner 240.8.h.b.191.32 yes 36
4.3 odd 2 inner 240.8.h.b.191.31 yes 36
12.11 even 2 inner 240.8.h.b.191.5 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.8.h.b.191.5 36 12.11 even 2 inner
240.8.h.b.191.6 yes 36 1.1 even 1 trivial
240.8.h.b.191.31 yes 36 4.3 odd 2 inner
240.8.h.b.191.32 yes 36 3.2 odd 2 inner