Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [240,8,Mod(191,240)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(240, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("240.191");
S:= CuspForms(chi, 8);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 240 = 2^{4} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 240.h (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(74.9724061162\) |
Analytic rank: | \(0\) |
Dimension: | \(36\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
191.1 | 0 | −45.6703 | − | 10.0611i | 0 | − | 125.000i | 0 | − | 760.932i | 0 | 1984.55 | + | 918.983i | 0 | ||||||||||||
191.2 | 0 | −45.6703 | + | 10.0611i | 0 | 125.000i | 0 | 760.932i | 0 | 1984.55 | − | 918.983i | 0 | ||||||||||||||
191.3 | 0 | −44.4287 | − | 14.5975i | 0 | 125.000i | 0 | 48.6804i | 0 | 1760.83 | + | 1297.10i | 0 | ||||||||||||||
191.4 | 0 | −44.4287 | + | 14.5975i | 0 | − | 125.000i | 0 | − | 48.6804i | 0 | 1760.83 | − | 1297.10i | 0 | ||||||||||||
191.5 | 0 | −42.2282 | − | 20.0943i | 0 | 125.000i | 0 | − | 1615.14i | 0 | 1379.44 | + | 1697.09i | 0 | |||||||||||||
191.6 | 0 | −42.2282 | + | 20.0943i | 0 | − | 125.000i | 0 | 1615.14i | 0 | 1379.44 | − | 1697.09i | 0 | |||||||||||||
191.7 | 0 | −41.2400 | − | 22.0513i | 0 | 125.000i | 0 | 1218.04i | 0 | 1214.48 | + | 1818.79i | 0 | ||||||||||||||
191.8 | 0 | −41.2400 | + | 22.0513i | 0 | − | 125.000i | 0 | − | 1218.04i | 0 | 1214.48 | − | 1818.79i | 0 | ||||||||||||
191.9 | 0 | −35.0344 | − | 30.9773i | 0 | − | 125.000i | 0 | 201.250i | 0 | 267.817 | + | 2170.54i | 0 | |||||||||||||
191.10 | 0 | −35.0344 | + | 30.9773i | 0 | 125.000i | 0 | − | 201.250i | 0 | 267.817 | − | 2170.54i | 0 | |||||||||||||
191.11 | 0 | −27.9167 | − | 37.5188i | 0 | − | 125.000i | 0 | 1233.84i | 0 | −628.314 | + | 2094.80i | 0 | |||||||||||||
191.12 | 0 | −27.9167 | + | 37.5188i | 0 | 125.000i | 0 | − | 1233.84i | 0 | −628.314 | − | 2094.80i | 0 | |||||||||||||
191.13 | 0 | −20.1503 | − | 42.2015i | 0 | 125.000i | 0 | 400.709i | 0 | −1374.93 | + | 1700.74i | 0 | ||||||||||||||
191.14 | 0 | −20.1503 | + | 42.2015i | 0 | − | 125.000i | 0 | − | 400.709i | 0 | −1374.93 | − | 1700.74i | 0 | ||||||||||||
191.15 | 0 | −15.4346 | − | 44.1449i | 0 | 125.000i | 0 | − | 3.33310i | 0 | −1710.54 | + | 1362.72i | 0 | |||||||||||||
191.16 | 0 | −15.4346 | + | 44.1449i | 0 | − | 125.000i | 0 | 3.33310i | 0 | −1710.54 | − | 1362.72i | 0 | |||||||||||||
191.17 | 0 | −7.89558 | − | 46.0940i | 0 | 125.000i | 0 | − | 1350.65i | 0 | −2062.32 | + | 727.879i | 0 | |||||||||||||
191.18 | 0 | −7.89558 | + | 46.0940i | 0 | − | 125.000i | 0 | 1350.65i | 0 | −2062.32 | − | 727.879i | 0 | |||||||||||||
191.19 | 0 | 7.89558 | − | 46.0940i | 0 | − | 125.000i | 0 | − | 1350.65i | 0 | −2062.32 | − | 727.879i | 0 | ||||||||||||
191.20 | 0 | 7.89558 | + | 46.0940i | 0 | 125.000i | 0 | 1350.65i | 0 | −2062.32 | + | 727.879i | 0 | ||||||||||||||
See all 36 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
4.b | odd | 2 | 1 | inner |
12.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 240.8.h.b | ✓ | 36 |
3.b | odd | 2 | 1 | inner | 240.8.h.b | ✓ | 36 |
4.b | odd | 2 | 1 | inner | 240.8.h.b | ✓ | 36 |
12.b | even | 2 | 1 | inner | 240.8.h.b | ✓ | 36 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
240.8.h.b | ✓ | 36 | 1.a | even | 1 | 1 | trivial |
240.8.h.b | ✓ | 36 | 3.b | odd | 2 | 1 | inner |
240.8.h.b | ✓ | 36 | 4.b | odd | 2 | 1 | inner |
240.8.h.b | ✓ | 36 | 12.b | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{18} + 8221380 T_{7}^{16} + 26288308795320 T_{7}^{14} + \cdots + 10\!\cdots\!00 \) acting on \(S_{8}^{\mathrm{new}}(240, [\chi])\).