L(s) = 1 | + (1.70 − 0.292i)3-s − 3.41·7-s + (2.82 − i)9-s + 2.82·11-s − 2i·13-s − 7.65·17-s + 2.82i·19-s + (−5.82 + i)21-s − 7.41i·23-s + (4.53 − 2.53i)27-s − 8i·29-s − 5.65i·31-s + (4.82 − 0.828i)33-s + 0.343i·37-s + (−0.585 − 3.41i)39-s + ⋯ |
L(s) = 1 | + (0.985 − 0.169i)3-s − 1.29·7-s + (0.942 − 0.333i)9-s + 0.852·11-s − 0.554i·13-s − 1.85·17-s + 0.648i·19-s + (−1.27 + 0.218i)21-s − 1.54i·23-s + (0.872 − 0.487i)27-s − 1.48i·29-s − 1.01i·31-s + (0.840 − 0.144i)33-s + 0.0564i·37-s + (−0.0938 − 0.546i)39-s + ⋯ |
Λ(s)=(=(2400s/2ΓC(s)L(s)(−0.151+0.988i)Λ(2−s)
Λ(s)=(=(2400s/2ΓC(s+1/2)L(s)(−0.151+0.988i)Λ(1−s)
Degree: |
2 |
Conductor: |
2400
= 25⋅3⋅52
|
Sign: |
−0.151+0.988i
|
Analytic conductor: |
19.1640 |
Root analytic conductor: |
4.37768 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2400(2399,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2400, ( :1/2), −0.151+0.988i)
|
Particular Values
L(1) |
≈ |
1.742700498 |
L(21) |
≈ |
1.742700498 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−1.70+0.292i)T |
| 5 | 1 |
good | 7 | 1+3.41T+7T2 |
| 11 | 1−2.82T+11T2 |
| 13 | 1+2iT−13T2 |
| 17 | 1+7.65T+17T2 |
| 19 | 1−2.82iT−19T2 |
| 23 | 1+7.41iT−23T2 |
| 29 | 1+8iT−29T2 |
| 31 | 1+5.65iT−31T2 |
| 37 | 1−0.343iT−37T2 |
| 41 | 1+2iT−41T2 |
| 43 | 1−7.89T+43T2 |
| 47 | 1+6.24iT−47T2 |
| 53 | 1+3.65T+53T2 |
| 59 | 1−1.65T+59T2 |
| 61 | 1−5.65T+61T2 |
| 67 | 1−1.07T+67T2 |
| 71 | 1+1.17T+71T2 |
| 73 | 1−15.6iT−73T2 |
| 79 | 1−4.48iT−79T2 |
| 83 | 1+5.07iT−83T2 |
| 89 | 1+7.31iT−89T2 |
| 97 | 1+18.9iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.724883395859655719714803863985, −8.184463292276824541642759071099, −7.10648040450643913356269732932, −6.55669595309024432048309908971, −5.91901269074076452941616561502, −4.31588032579121051688519370677, −3.93885803989304501445664910713, −2.81057384900488330645414989652, −2.14218418945871467103825991766, −0.49964425493072490125387421834,
1.48095251425234716265534826934, 2.60655695855997280987215329255, 3.44749087836661785750565132887, 4.13466273104950444861674502415, 5.06214755876157013257760103599, 6.46480980624158757859443512782, 6.77548446262113259592458978357, 7.57070339968828834644997053076, 8.745394414240392457038587300619, 9.259458664693870515968605546480