L(s) = 1 | + (1.70 − 0.292i)3-s − 3.41·7-s + (2.82 − i)9-s + 2.82·11-s − 2i·13-s − 7.65·17-s + 2.82i·19-s + (−5.82 + i)21-s − 7.41i·23-s + (4.53 − 2.53i)27-s − 8i·29-s − 5.65i·31-s + (4.82 − 0.828i)33-s + 0.343i·37-s + (−0.585 − 3.41i)39-s + ⋯ |
L(s) = 1 | + (0.985 − 0.169i)3-s − 1.29·7-s + (0.942 − 0.333i)9-s + 0.852·11-s − 0.554i·13-s − 1.85·17-s + 0.648i·19-s + (−1.27 + 0.218i)21-s − 1.54i·23-s + (0.872 − 0.487i)27-s − 1.48i·29-s − 1.01i·31-s + (0.840 − 0.144i)33-s + 0.0564i·37-s + (−0.0938 − 0.546i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.151 + 0.988i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.151 + 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.742700498\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.742700498\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.70 + 0.292i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + 3.41T + 7T^{2} \) |
| 11 | \( 1 - 2.82T + 11T^{2} \) |
| 13 | \( 1 + 2iT - 13T^{2} \) |
| 17 | \( 1 + 7.65T + 17T^{2} \) |
| 19 | \( 1 - 2.82iT - 19T^{2} \) |
| 23 | \( 1 + 7.41iT - 23T^{2} \) |
| 29 | \( 1 + 8iT - 29T^{2} \) |
| 31 | \( 1 + 5.65iT - 31T^{2} \) |
| 37 | \( 1 - 0.343iT - 37T^{2} \) |
| 41 | \( 1 + 2iT - 41T^{2} \) |
| 43 | \( 1 - 7.89T + 43T^{2} \) |
| 47 | \( 1 + 6.24iT - 47T^{2} \) |
| 53 | \( 1 + 3.65T + 53T^{2} \) |
| 59 | \( 1 - 1.65T + 59T^{2} \) |
| 61 | \( 1 - 5.65T + 61T^{2} \) |
| 67 | \( 1 - 1.07T + 67T^{2} \) |
| 71 | \( 1 + 1.17T + 71T^{2} \) |
| 73 | \( 1 - 15.6iT - 73T^{2} \) |
| 79 | \( 1 - 4.48iT - 79T^{2} \) |
| 83 | \( 1 + 5.07iT - 83T^{2} \) |
| 89 | \( 1 + 7.31iT - 89T^{2} \) |
| 97 | \( 1 + 18.9iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.724883395859655719714803863985, −8.184463292276824541642759071099, −7.10648040450643913356269732932, −6.55669595309024432048309908971, −5.91901269074076452941616561502, −4.31588032579121051688519370677, −3.93885803989304501445664910713, −2.81057384900488330645414989652, −2.14218418945871467103825991766, −0.49964425493072490125387421834,
1.48095251425234716265534826934, 2.60655695855997280987215329255, 3.44749087836661785750565132887, 4.13466273104950444861674502415, 5.06214755876157013257760103599, 6.46480980624158757859443512782, 6.77548446262113259592458978357, 7.57070339968828834644997053076, 8.745394414240392457038587300619, 9.259458664693870515968605546480