Properties

Label 2-2400-1.1-c3-0-31
Degree $2$
Conductor $2400$
Sign $1$
Analytic cond. $141.604$
Root an. cond. $11.8997$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 2.13·7-s + 9·9-s − 24.4·11-s − 34.0·13-s + 123.·17-s − 9.17·19-s + 6.39·21-s − 142.·23-s + 27·27-s + 140.·29-s + 158.·31-s − 73.3·33-s − 58.5·37-s − 102.·39-s − 108.·41-s + 246.·43-s − 466.·47-s − 338.·49-s + 369.·51-s + 312.·53-s − 27.5·57-s + 410.·59-s − 44.5·61-s + 19.1·63-s + 368.·67-s − 426.·69-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.115·7-s + 0.333·9-s − 0.670·11-s − 0.726·13-s + 1.75·17-s − 0.110·19-s + 0.0664·21-s − 1.28·23-s + 0.192·27-s + 0.899·29-s + 0.919·31-s − 0.386·33-s − 0.260·37-s − 0.419·39-s − 0.414·41-s + 0.874·43-s − 1.44·47-s − 0.986·49-s + 1.01·51-s + 0.810·53-s − 0.0639·57-s + 0.906·59-s − 0.0935·61-s + 0.0383·63-s + 0.671·67-s − 0.744·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2400\)    =    \(2^{5} \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(141.604\)
Root analytic conductor: \(11.8997\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2400,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.635395311\)
\(L(\frac12)\) \(\approx\) \(2.635395311\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
5 \( 1 \)
good7 \( 1 - 2.13T + 343T^{2} \)
11 \( 1 + 24.4T + 1.33e3T^{2} \)
13 \( 1 + 34.0T + 2.19e3T^{2} \)
17 \( 1 - 123.T + 4.91e3T^{2} \)
19 \( 1 + 9.17T + 6.85e3T^{2} \)
23 \( 1 + 142.T + 1.21e4T^{2} \)
29 \( 1 - 140.T + 2.43e4T^{2} \)
31 \( 1 - 158.T + 2.97e4T^{2} \)
37 \( 1 + 58.5T + 5.06e4T^{2} \)
41 \( 1 + 108.T + 6.89e4T^{2} \)
43 \( 1 - 246.T + 7.95e4T^{2} \)
47 \( 1 + 466.T + 1.03e5T^{2} \)
53 \( 1 - 312.T + 1.48e5T^{2} \)
59 \( 1 - 410.T + 2.05e5T^{2} \)
61 \( 1 + 44.5T + 2.26e5T^{2} \)
67 \( 1 - 368.T + 3.00e5T^{2} \)
71 \( 1 + 108.T + 3.57e5T^{2} \)
73 \( 1 - 627.T + 3.89e5T^{2} \)
79 \( 1 - 196.T + 4.93e5T^{2} \)
83 \( 1 - 107.T + 5.71e5T^{2} \)
89 \( 1 - 685.T + 7.04e5T^{2} \)
97 \( 1 + 73.7T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.289509203990875602538704496761, −8.053633217445237739408811670803, −7.25662534793662617034101137134, −6.31404544826835950033305782858, −5.38914108486549337704529864675, −4.66237664216709488371547085236, −3.61587451513099955493487954594, −2.81850202340345936773495603543, −1.91141289495022899836119161203, −0.69374050103727134063940144597, 0.69374050103727134063940144597, 1.91141289495022899836119161203, 2.81850202340345936773495603543, 3.61587451513099955493487954594, 4.66237664216709488371547085236, 5.38914108486549337704529864675, 6.31404544826835950033305782858, 7.25662534793662617034101137134, 8.053633217445237739408811670803, 8.289509203990875602538704496761

Graph of the $Z$-function along the critical line