Properties

Label 2400.4.a.bt
Level $2400$
Weight $4$
Character orbit 2400.a
Self dual yes
Analytic conductor $141.605$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2400,4,Mod(1,2400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2400.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.604584014\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.115636.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 69x - 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 q^{3} + (\beta_{2} - 1) q^{7} + 9 q^{9} + ( - \beta_{2} - \beta_1 + 15) q^{11} + (2 \beta_{2} - \beta_1 - 4) q^{13} + (\beta_{2} + 3 \beta_1 + 11) q^{17} + (\beta_{2} - \beta_1 + 24) q^{19} + (3 \beta_{2} - 3) q^{21}+ \cdots + ( - 9 \beta_{2} - 9 \beta_1 + 135) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 9 q^{3} - 3 q^{7} + 27 q^{9} + 44 q^{11} - 13 q^{13} + 36 q^{17} + 71 q^{19} - 9 q^{21} + 160 q^{23} + 81 q^{27} - 184 q^{29} - 59 q^{31} + 132 q^{33} + 350 q^{37} - 39 q^{39} + 166 q^{41} + 341 q^{43}+ \cdots + 396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 69x - 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 4\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 2\nu^{2} - 8\nu - 90 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 3\beta_{2} + 2\beta _1 + 92 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.22200
9.32800
−7.10600
0 3.00000 0 0 0 −26.7458 0 9.00000 0
1.2 0 3.00000 0 0 0 2.13303 0 9.00000 0
1.3 0 3.00000 0 0 0 21.6128 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2400.4.a.bt yes 3
4.b odd 2 1 2400.4.a.bi 3
5.b even 2 1 2400.4.a.bj yes 3
20.d odd 2 1 2400.4.a.bs yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2400.4.a.bi 3 4.b odd 2 1
2400.4.a.bj yes 3 5.b even 2 1
2400.4.a.bs yes 3 20.d odd 2 1
2400.4.a.bt yes 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2400))\):

\( T_{7}^{3} + 3T_{7}^{2} - 589T_{7} + 1233 \) Copy content Toggle raw display
\( T_{11}^{3} - 44T_{11}^{2} - 656T_{11} + 24864 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( (T - 3)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 3 T^{2} + \cdots + 1233 \) Copy content Toggle raw display
$11$ \( T^{3} - 44 T^{2} + \cdots + 24864 \) Copy content Toggle raw display
$13$ \( T^{3} + 13 T^{2} + \cdots - 119313 \) Copy content Toggle raw display
$17$ \( T^{3} - 36 T^{2} + \cdots - 218016 \) Copy content Toggle raw display
$19$ \( T^{3} - 71 T^{2} + \cdots + 2891 \) Copy content Toggle raw display
$23$ \( T^{3} - 160 T^{2} + \cdots + 2700000 \) Copy content Toggle raw display
$29$ \( T^{3} + 184 T^{2} + \cdots - 1985440 \) Copy content Toggle raw display
$31$ \( T^{3} + 59 T^{2} + \cdots + 5724361 \) Copy content Toggle raw display
$37$ \( T^{3} - 350 T^{2} + \cdots + 223640 \) Copy content Toggle raw display
$41$ \( T^{3} - 166 T^{2} + \cdots - 1460648 \) Copy content Toggle raw display
$43$ \( T^{3} - 341 T^{2} + \cdots + 43261577 \) Copy content Toggle raw display
$47$ \( T^{3} + 394 T^{2} + \cdots - 44505544 \) Copy content Toggle raw display
$53$ \( T^{3} - 314 T^{2} + \cdots + 7884200 \) Copy content Toggle raw display
$59$ \( T^{3} - 538 T^{2} + \cdots + 161430408 \) Copy content Toggle raw display
$61$ \( T^{3} + 523 T^{2} + \cdots - 6303415 \) Copy content Toggle raw display
$67$ \( T^{3} + 543 T^{2} + \cdots - 72402579 \) Copy content Toggle raw display
$71$ \( T^{3} - 910 T^{2} + \cdots + 28003320 \) Copy content Toggle raw display
$73$ \( T^{3} - 870 T^{2} + \cdots + 462224120 \) Copy content Toggle raw display
$79$ \( T^{3} + 96 T^{2} + \cdots - 4064256 \) Copy content Toggle raw display
$83$ \( T^{3} - 210 T^{2} + \cdots + 8776232 \) Copy content Toggle raw display
$89$ \( T^{3} + 64 T^{2} + \cdots - 20736000 \) Copy content Toggle raw display
$97$ \( T^{3} - 943 T^{2} + \cdots - 15001373 \) Copy content Toggle raw display
show more
show less