L(s) = 1 | + 4.68·2-s + 7.83·3-s − 490.·4-s + 625·5-s + 36.6·6-s − 4.69e3·8-s − 1.96e4·9-s + 2.92e3·10-s + 6.12e4·11-s − 3.84e3·12-s − 1.27e5·13-s + 4.89e3·15-s + 2.28e5·16-s + 3.74e5·17-s − 9.18e4·18-s − 3.51e5·19-s − 3.06e5·20-s + 2.86e5·22-s + 1.55e6·23-s − 3.67e4·24-s + 3.90e5·25-s − 5.98e5·26-s − 3.08e5·27-s + 3.12e6·29-s + 2.29e4·30-s − 6.54e6·31-s + 3.47e6·32-s + ⋯ |
L(s) = 1 | + 0.206·2-s + 0.0558·3-s − 0.957·4-s + 0.447·5-s + 0.0115·6-s − 0.404·8-s − 0.996·9-s + 0.0925·10-s + 1.26·11-s − 0.0534·12-s − 1.24·13-s + 0.0249·15-s + 0.873·16-s + 1.08·17-s − 0.206·18-s − 0.618·19-s − 0.428·20-s + 0.261·22-s + 1.16·23-s − 0.0226·24-s + 0.200·25-s − 0.256·26-s − 0.111·27-s + 0.821·29-s + 0.00516·30-s − 1.27·31-s + 0.585·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(5)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{11}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 - 625T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 - 4.68T + 512T^{2} \) |
| 3 | \( 1 - 7.83T + 1.96e4T^{2} \) |
| 11 | \( 1 - 6.12e4T + 2.35e9T^{2} \) |
| 13 | \( 1 + 1.27e5T + 1.06e10T^{2} \) |
| 17 | \( 1 - 3.74e5T + 1.18e11T^{2} \) |
| 19 | \( 1 + 3.51e5T + 3.22e11T^{2} \) |
| 23 | \( 1 - 1.55e6T + 1.80e12T^{2} \) |
| 29 | \( 1 - 3.12e6T + 1.45e13T^{2} \) |
| 31 | \( 1 + 6.54e6T + 2.64e13T^{2} \) |
| 37 | \( 1 + 9.25e6T + 1.29e14T^{2} \) |
| 41 | \( 1 - 8.05e6T + 3.27e14T^{2} \) |
| 43 | \( 1 - 1.58e7T + 5.02e14T^{2} \) |
| 47 | \( 1 - 8.88e6T + 1.11e15T^{2} \) |
| 53 | \( 1 + 5.68e7T + 3.29e15T^{2} \) |
| 59 | \( 1 + 8.14e7T + 8.66e15T^{2} \) |
| 61 | \( 1 - 2.04e8T + 1.16e16T^{2} \) |
| 67 | \( 1 - 8.88e7T + 2.72e16T^{2} \) |
| 71 | \( 1 - 2.24e8T + 4.58e16T^{2} \) |
| 73 | \( 1 + 1.91e8T + 5.88e16T^{2} \) |
| 79 | \( 1 - 2.39e7T + 1.19e17T^{2} \) |
| 83 | \( 1 + 4.05e8T + 1.86e17T^{2} \) |
| 89 | \( 1 + 2.03e8T + 3.50e17T^{2} \) |
| 97 | \( 1 + 9.77e8T + 7.60e17T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.722177175826735448933515105329, −9.153218216350052459470371793113, −8.265649170284099408543948024889, −6.95095121874829802732148834015, −5.74652874953702501568057093346, −4.97775391885228538037572759400, −3.78375957885512788358085952456, −2.70519464712728256680524099944, −1.18789691149311534645264530751, 0,
1.18789691149311534645264530751, 2.70519464712728256680524099944, 3.78375957885512788358085952456, 4.97775391885228538037572759400, 5.74652874953702501568057093346, 6.95095121874829802732148834015, 8.265649170284099408543948024889, 9.153218216350052459470371793113, 9.722177175826735448933515105329