Properties

Label 2-245-1.1-c9-0-86
Degree $2$
Conductor $245$
Sign $-1$
Analytic cond. $126.183$
Root an. cond. $11.2331$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.68·2-s + 7.83·3-s − 490.·4-s + 625·5-s + 36.6·6-s − 4.69e3·8-s − 1.96e4·9-s + 2.92e3·10-s + 6.12e4·11-s − 3.84e3·12-s − 1.27e5·13-s + 4.89e3·15-s + 2.28e5·16-s + 3.74e5·17-s − 9.18e4·18-s − 3.51e5·19-s − 3.06e5·20-s + 2.86e5·22-s + 1.55e6·23-s − 3.67e4·24-s + 3.90e5·25-s − 5.98e5·26-s − 3.08e5·27-s + 3.12e6·29-s + 2.29e4·30-s − 6.54e6·31-s + 3.47e6·32-s + ⋯
L(s)  = 1  + 0.206·2-s + 0.0558·3-s − 0.957·4-s + 0.447·5-s + 0.0115·6-s − 0.404·8-s − 0.996·9-s + 0.0925·10-s + 1.26·11-s − 0.0534·12-s − 1.24·13-s + 0.0249·15-s + 0.873·16-s + 1.08·17-s − 0.206·18-s − 0.618·19-s − 0.428·20-s + 0.261·22-s + 1.16·23-s − 0.0226·24-s + 0.200·25-s − 0.256·26-s − 0.111·27-s + 0.821·29-s + 0.00516·30-s − 1.27·31-s + 0.585·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(245\)    =    \(5 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(126.183\)
Root analytic conductor: \(11.2331\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 245,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 625T \)
7 \( 1 \)
good2 \( 1 - 4.68T + 512T^{2} \)
3 \( 1 - 7.83T + 1.96e4T^{2} \)
11 \( 1 - 6.12e4T + 2.35e9T^{2} \)
13 \( 1 + 1.27e5T + 1.06e10T^{2} \)
17 \( 1 - 3.74e5T + 1.18e11T^{2} \)
19 \( 1 + 3.51e5T + 3.22e11T^{2} \)
23 \( 1 - 1.55e6T + 1.80e12T^{2} \)
29 \( 1 - 3.12e6T + 1.45e13T^{2} \)
31 \( 1 + 6.54e6T + 2.64e13T^{2} \)
37 \( 1 + 9.25e6T + 1.29e14T^{2} \)
41 \( 1 - 8.05e6T + 3.27e14T^{2} \)
43 \( 1 - 1.58e7T + 5.02e14T^{2} \)
47 \( 1 - 8.88e6T + 1.11e15T^{2} \)
53 \( 1 + 5.68e7T + 3.29e15T^{2} \)
59 \( 1 + 8.14e7T + 8.66e15T^{2} \)
61 \( 1 - 2.04e8T + 1.16e16T^{2} \)
67 \( 1 - 8.88e7T + 2.72e16T^{2} \)
71 \( 1 - 2.24e8T + 4.58e16T^{2} \)
73 \( 1 + 1.91e8T + 5.88e16T^{2} \)
79 \( 1 - 2.39e7T + 1.19e17T^{2} \)
83 \( 1 + 4.05e8T + 1.86e17T^{2} \)
89 \( 1 + 2.03e8T + 3.50e17T^{2} \)
97 \( 1 + 9.77e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.722177175826735448933515105329, −9.153218216350052459470371793113, −8.265649170284099408543948024889, −6.95095121874829802732148834015, −5.74652874953702501568057093346, −4.97775391885228538037572759400, −3.78375957885512788358085952456, −2.70519464712728256680524099944, −1.18789691149311534645264530751, 0, 1.18789691149311534645264530751, 2.70519464712728256680524099944, 3.78375957885512788358085952456, 4.97775391885228538037572759400, 5.74652874953702501568057093346, 6.95095121874829802732148834015, 8.265649170284099408543948024889, 9.153218216350052459470371793113, 9.722177175826735448933515105329

Graph of the $Z$-function along the critical line