Properties

Label 245.10.a.f.1.3
Level $245$
Weight $10$
Character 245.1
Self dual yes
Analytic conductor $126.184$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,10,Mod(1,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 245.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(126.183779860\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 1694x^{3} + 7420x^{2} + 583584x - 2721600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3}\cdot 5 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(4.68049\) of defining polynomial
Character \(\chi\) \(=\) 245.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.68049 q^{2} +7.83652 q^{3} -490.093 q^{4} +625.000 q^{5} +36.6787 q^{6} -4690.29 q^{8} -19621.6 q^{9} +2925.31 q^{10} +61293.3 q^{11} -3840.62 q^{12} -127788. q^{13} +4897.82 q^{15} +228975. q^{16} +374440. q^{17} -91838.6 q^{18} -351367. q^{19} -306308. q^{20} +286883. q^{22} +1.55822e6 q^{23} -36755.5 q^{24} +390625. q^{25} -598109. q^{26} -308011. q^{27} +3.12932e6 q^{29} +22924.2 q^{30} -6.54089e6 q^{31} +3.47314e6 q^{32} +480326. q^{33} +1.75256e6 q^{34} +9.61640e6 q^{36} -9.25714e6 q^{37} -1.64457e6 q^{38} -1.00141e6 q^{39} -2.93143e6 q^{40} +8.05013e6 q^{41} +1.58627e7 q^{43} -3.00394e7 q^{44} -1.22635e7 q^{45} +7.29324e6 q^{46} +8.88373e6 q^{47} +1.79436e6 q^{48} +1.82832e6 q^{50} +2.93431e6 q^{51} +6.26278e7 q^{52} -5.68387e7 q^{53} -1.44164e6 q^{54} +3.83083e7 q^{55} -2.75349e6 q^{57} +1.46467e7 q^{58} -8.14197e7 q^{59} -2.40039e6 q^{60} +2.04282e8 q^{61} -3.06146e7 q^{62} -1.00979e8 q^{64} -7.98673e7 q^{65} +2.24816e6 q^{66} +8.88281e7 q^{67} -1.83510e8 q^{68} +1.22110e7 q^{69} +2.24233e8 q^{71} +9.20309e7 q^{72} -1.91441e8 q^{73} -4.33280e7 q^{74} +3.06114e6 q^{75} +1.72203e8 q^{76} -4.68709e6 q^{78} +2.39411e7 q^{79} +1.43109e8 q^{80} +3.83798e8 q^{81} +3.76785e7 q^{82} -4.05879e8 q^{83} +2.34025e8 q^{85} +7.42452e7 q^{86} +2.45229e7 q^{87} -2.87483e8 q^{88} -2.03470e8 q^{89} -5.73992e7 q^{90} -7.63674e8 q^{92} -5.12578e7 q^{93} +4.15802e7 q^{94} -2.19604e8 q^{95} +2.72173e7 q^{96} -9.77776e8 q^{97} -1.20267e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{2} - 140 q^{3} + 832 q^{4} + 3125 q^{5} + 144 q^{6} - 14136 q^{8} + 67797 q^{9} + 1250 q^{10} + 10312 q^{11} - 63388 q^{12} - 158638 q^{13} - 87500 q^{15} - 526696 q^{16} - 31614 q^{17} + 1816986 q^{18}+ \cdots + 698312668 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.68049 0.206850 0.103425 0.994637i \(-0.467020\pi\)
0.103425 + 0.994637i \(0.467020\pi\)
\(3\) 7.83652 0.0558570 0.0279285 0.999610i \(-0.491109\pi\)
0.0279285 + 0.999610i \(0.491109\pi\)
\(4\) −490.093 −0.957213
\(5\) 625.000 0.447214
\(6\) 36.6787 0.0115540
\(7\) 0 0
\(8\) −4690.29 −0.404850
\(9\) −19621.6 −0.996880
\(10\) 2925.31 0.0925063
\(11\) 61293.3 1.26225 0.631126 0.775680i \(-0.282593\pi\)
0.631126 + 0.775680i \(0.282593\pi\)
\(12\) −3840.62 −0.0534670
\(13\) −127788. −1.24092 −0.620460 0.784238i \(-0.713054\pi\)
−0.620460 + 0.784238i \(0.713054\pi\)
\(14\) 0 0
\(15\) 4897.82 0.0249800
\(16\) 228975. 0.873470
\(17\) 374440. 1.08733 0.543666 0.839302i \(-0.317036\pi\)
0.543666 + 0.839302i \(0.317036\pi\)
\(18\) −91838.6 −0.206205
\(19\) −351367. −0.618543 −0.309272 0.950974i \(-0.600085\pi\)
−0.309272 + 0.950974i \(0.600085\pi\)
\(20\) −306308. −0.428079
\(21\) 0 0
\(22\) 286883. 0.261097
\(23\) 1.55822e6 1.16106 0.580529 0.814239i \(-0.302846\pi\)
0.580529 + 0.814239i \(0.302846\pi\)
\(24\) −36755.5 −0.0226137
\(25\) 390625. 0.200000
\(26\) −598109. −0.256685
\(27\) −308011. −0.111540
\(28\) 0 0
\(29\) 3.12932e6 0.821597 0.410798 0.911726i \(-0.365250\pi\)
0.410798 + 0.911726i \(0.365250\pi\)
\(30\) 22924.2 0.00516712
\(31\) −6.54089e6 −1.27206 −0.636032 0.771662i \(-0.719426\pi\)
−0.636032 + 0.771662i \(0.719426\pi\)
\(32\) 3.47314e6 0.585528
\(33\) 480326. 0.0705056
\(34\) 1.75256e6 0.224915
\(35\) 0 0
\(36\) 9.61640e6 0.954226
\(37\) −9.25714e6 −0.812025 −0.406012 0.913868i \(-0.633081\pi\)
−0.406012 + 0.913868i \(0.633081\pi\)
\(38\) −1.64457e6 −0.127946
\(39\) −1.00141e6 −0.0693140
\(40\) −2.93143e6 −0.181055
\(41\) 8.05013e6 0.444913 0.222457 0.974943i \(-0.428592\pi\)
0.222457 + 0.974943i \(0.428592\pi\)
\(42\) 0 0
\(43\) 1.58627e7 0.707570 0.353785 0.935327i \(-0.384895\pi\)
0.353785 + 0.935327i \(0.384895\pi\)
\(44\) −3.00394e7 −1.20824
\(45\) −1.22635e7 −0.445818
\(46\) 7.29324e6 0.240165
\(47\) 8.88373e6 0.265555 0.132778 0.991146i \(-0.457610\pi\)
0.132778 + 0.991146i \(0.457610\pi\)
\(48\) 1.79436e6 0.0487894
\(49\) 0 0
\(50\) 1.82832e6 0.0413701
\(51\) 2.93431e6 0.0607351
\(52\) 6.26278e7 1.18782
\(53\) −5.68387e7 −0.989471 −0.494735 0.869044i \(-0.664735\pi\)
−0.494735 + 0.869044i \(0.664735\pi\)
\(54\) −1.44164e6 −0.0230720
\(55\) 3.83083e7 0.564496
\(56\) 0 0
\(57\) −2.75349e6 −0.0345499
\(58\) 1.46467e7 0.169948
\(59\) −8.14197e7 −0.874773 −0.437387 0.899274i \(-0.644096\pi\)
−0.437387 + 0.899274i \(0.644096\pi\)
\(60\) −2.40039e6 −0.0239112
\(61\) 2.04282e8 1.88906 0.944531 0.328421i \(-0.106517\pi\)
0.944531 + 0.328421i \(0.106517\pi\)
\(62\) −3.06146e7 −0.263127
\(63\) 0 0
\(64\) −1.00979e8 −0.752353
\(65\) −7.98673e7 −0.554956
\(66\) 2.24816e6 0.0145841
\(67\) 8.88281e7 0.538535 0.269267 0.963065i \(-0.413218\pi\)
0.269267 + 0.963065i \(0.413218\pi\)
\(68\) −1.83510e8 −1.04081
\(69\) 1.22110e7 0.0648532
\(70\) 0 0
\(71\) 2.24233e8 1.04722 0.523609 0.851959i \(-0.324585\pi\)
0.523609 + 0.851959i \(0.324585\pi\)
\(72\) 9.20309e7 0.403587
\(73\) −1.91441e8 −0.789010 −0.394505 0.918894i \(-0.629084\pi\)
−0.394505 + 0.918894i \(0.629084\pi\)
\(74\) −4.33280e7 −0.167968
\(75\) 3.06114e6 0.0111714
\(76\) 1.72203e8 0.592077
\(77\) 0 0
\(78\) −4.68709e6 −0.0143376
\(79\) 2.39411e7 0.0691549 0.0345774 0.999402i \(-0.488991\pi\)
0.0345774 + 0.999402i \(0.488991\pi\)
\(80\) 1.43109e8 0.390627
\(81\) 3.83798e8 0.990650
\(82\) 3.76785e7 0.0920305
\(83\) −4.05879e8 −0.938741 −0.469370 0.883001i \(-0.655519\pi\)
−0.469370 + 0.883001i \(0.655519\pi\)
\(84\) 0 0
\(85\) 2.34025e8 0.486270
\(86\) 7.42452e7 0.146361
\(87\) 2.45229e7 0.0458919
\(88\) −2.87483e8 −0.511023
\(89\) −2.03470e8 −0.343752 −0.171876 0.985119i \(-0.554983\pi\)
−0.171876 + 0.985119i \(0.554983\pi\)
\(90\) −5.73992e7 −0.0922177
\(91\) 0 0
\(92\) −7.63674e8 −1.11138
\(93\) −5.12578e7 −0.0710537
\(94\) 4.15802e7 0.0549302
\(95\) −2.19604e8 −0.276621
\(96\) 2.72173e7 0.0327058
\(97\) −9.77776e8 −1.12142 −0.560708 0.828014i \(-0.689471\pi\)
−0.560708 + 0.828014i \(0.689471\pi\)
\(98\) 0 0
\(99\) −1.20267e9 −1.25831
\(100\) −1.91443e8 −0.191443
\(101\) −1.21059e9 −1.15758 −0.578792 0.815475i \(-0.696476\pi\)
−0.578792 + 0.815475i \(0.696476\pi\)
\(102\) 1.37340e7 0.0125631
\(103\) −1.67608e9 −1.46733 −0.733666 0.679511i \(-0.762192\pi\)
−0.733666 + 0.679511i \(0.762192\pi\)
\(104\) 5.99361e8 0.502387
\(105\) 0 0
\(106\) −2.66033e8 −0.204672
\(107\) −1.18347e9 −0.872831 −0.436416 0.899745i \(-0.643752\pi\)
−0.436416 + 0.899745i \(0.643752\pi\)
\(108\) 1.50954e8 0.106767
\(109\) −2.42544e9 −1.64578 −0.822888 0.568203i \(-0.807639\pi\)
−0.822888 + 0.568203i \(0.807639\pi\)
\(110\) 1.79302e8 0.116766
\(111\) −7.25438e7 −0.0453572
\(112\) 0 0
\(113\) 1.29095e9 0.744828 0.372414 0.928067i \(-0.378530\pi\)
0.372414 + 0.928067i \(0.378530\pi\)
\(114\) −1.28877e7 −0.00714667
\(115\) 9.73889e8 0.519241
\(116\) −1.53366e9 −0.786443
\(117\) 2.50740e9 1.23705
\(118\) −3.81084e8 −0.180947
\(119\) 0 0
\(120\) −2.29722e7 −0.0101132
\(121\) 1.39892e9 0.593280
\(122\) 9.56141e8 0.390753
\(123\) 6.30850e7 0.0248515
\(124\) 3.20564e9 1.21764
\(125\) 2.44141e8 0.0894427
\(126\) 0 0
\(127\) 4.57285e9 1.55980 0.779902 0.625902i \(-0.215269\pi\)
0.779902 + 0.625902i \(0.215269\pi\)
\(128\) −2.25088e9 −0.741152
\(129\) 1.24308e8 0.0395227
\(130\) −3.73818e8 −0.114793
\(131\) −1.97356e9 −0.585504 −0.292752 0.956188i \(-0.594571\pi\)
−0.292752 + 0.956188i \(0.594571\pi\)
\(132\) −2.35404e8 −0.0674888
\(133\) 0 0
\(134\) 4.15759e8 0.111396
\(135\) −1.92507e8 −0.0498821
\(136\) −1.75623e9 −0.440207
\(137\) 2.91623e9 0.707260 0.353630 0.935385i \(-0.384947\pi\)
0.353630 + 0.935385i \(0.384947\pi\)
\(138\) 5.71536e7 0.0134149
\(139\) −1.68574e8 −0.0383023 −0.0191512 0.999817i \(-0.506096\pi\)
−0.0191512 + 0.999817i \(0.506096\pi\)
\(140\) 0 0
\(141\) 6.96175e7 0.0148331
\(142\) 1.04952e9 0.216617
\(143\) −7.83253e9 −1.56635
\(144\) −4.49285e9 −0.870744
\(145\) 1.95582e9 0.367429
\(146\) −8.96039e8 −0.163207
\(147\) 0 0
\(148\) 4.53686e9 0.777281
\(149\) −1.03146e10 −1.71440 −0.857202 0.514980i \(-0.827799\pi\)
−0.857202 + 0.514980i \(0.827799\pi\)
\(150\) 1.43276e7 0.00231081
\(151\) −6.51350e9 −1.01957 −0.509786 0.860301i \(-0.670276\pi\)
−0.509786 + 0.860301i \(0.670276\pi\)
\(152\) 1.64801e9 0.250417
\(153\) −7.34711e9 −1.08394
\(154\) 0 0
\(155\) −4.08806e9 −0.568885
\(156\) 4.90784e8 0.0663483
\(157\) −1.06861e10 −1.40369 −0.701843 0.712332i \(-0.747639\pi\)
−0.701843 + 0.712332i \(0.747639\pi\)
\(158\) 1.12056e8 0.0143047
\(159\) −4.45418e8 −0.0552688
\(160\) 2.17071e9 0.261856
\(161\) 0 0
\(162\) 1.79636e9 0.204916
\(163\) 1.42299e10 1.57891 0.789457 0.613806i \(-0.210362\pi\)
0.789457 + 0.613806i \(0.210362\pi\)
\(164\) −3.94531e9 −0.425877
\(165\) 3.00204e8 0.0315311
\(166\) −1.89971e9 −0.194179
\(167\) −2.78646e9 −0.277223 −0.138611 0.990347i \(-0.544264\pi\)
−0.138611 + 0.990347i \(0.544264\pi\)
\(168\) 0 0
\(169\) 5.72518e9 0.539882
\(170\) 1.09535e9 0.100585
\(171\) 6.89438e9 0.616613
\(172\) −7.77420e9 −0.677295
\(173\) 1.71904e10 1.45908 0.729540 0.683938i \(-0.239734\pi\)
0.729540 + 0.683938i \(0.239734\pi\)
\(174\) 1.14779e8 0.00949276
\(175\) 0 0
\(176\) 1.40346e10 1.10254
\(177\) −6.38047e8 −0.0488622
\(178\) −9.52340e8 −0.0711053
\(179\) −2.31226e10 −1.68344 −0.841719 0.539915i \(-0.818456\pi\)
−0.841719 + 0.539915i \(0.818456\pi\)
\(180\) 6.01025e9 0.426743
\(181\) −2.28943e10 −1.58553 −0.792763 0.609531i \(-0.791358\pi\)
−0.792763 + 0.609531i \(0.791358\pi\)
\(182\) 0 0
\(183\) 1.60086e9 0.105517
\(184\) −7.30851e9 −0.470055
\(185\) −5.78572e9 −0.363149
\(186\) −2.39912e8 −0.0146975
\(187\) 2.29507e10 1.37249
\(188\) −4.35386e9 −0.254193
\(189\) 0 0
\(190\) −1.02786e9 −0.0572191
\(191\) −1.66664e10 −0.906131 −0.453065 0.891477i \(-0.649670\pi\)
−0.453065 + 0.891477i \(0.649670\pi\)
\(192\) −7.91324e8 −0.0420242
\(193\) −2.30952e10 −1.19816 −0.599079 0.800690i \(-0.704466\pi\)
−0.599079 + 0.800690i \(0.704466\pi\)
\(194\) −4.57647e9 −0.231965
\(195\) −6.25881e8 −0.0309982
\(196\) 0 0
\(197\) −2.42166e10 −1.14555 −0.572776 0.819712i \(-0.694134\pi\)
−0.572776 + 0.819712i \(0.694134\pi\)
\(198\) −5.62910e9 −0.260283
\(199\) 2.18408e10 0.987257 0.493628 0.869673i \(-0.335670\pi\)
0.493628 + 0.869673i \(0.335670\pi\)
\(200\) −1.83214e9 −0.0809700
\(201\) 6.96103e8 0.0300809
\(202\) −5.66617e9 −0.239447
\(203\) 0 0
\(204\) −1.43808e9 −0.0581364
\(205\) 5.03133e9 0.198971
\(206\) −7.84489e9 −0.303518
\(207\) −3.05748e10 −1.15744
\(208\) −2.92601e10 −1.08391
\(209\) −2.15365e10 −0.780757
\(210\) 0 0
\(211\) 7.72507e9 0.268307 0.134153 0.990961i \(-0.457169\pi\)
0.134153 + 0.990961i \(0.457169\pi\)
\(212\) 2.78563e10 0.947134
\(213\) 1.75720e9 0.0584944
\(214\) −5.53922e9 −0.180545
\(215\) 9.91419e9 0.316435
\(216\) 1.44466e9 0.0451569
\(217\) 0 0
\(218\) −1.13522e10 −0.340429
\(219\) −1.50023e9 −0.0440717
\(220\) −1.87746e10 −0.540343
\(221\) −4.78488e10 −1.34929
\(222\) −3.39540e8 −0.00938216
\(223\) −2.17022e10 −0.587668 −0.293834 0.955856i \(-0.594931\pi\)
−0.293834 + 0.955856i \(0.594931\pi\)
\(224\) 0 0
\(225\) −7.66468e9 −0.199376
\(226\) 6.04227e9 0.154068
\(227\) −4.79669e10 −1.19902 −0.599508 0.800369i \(-0.704637\pi\)
−0.599508 + 0.800369i \(0.704637\pi\)
\(228\) 1.34947e9 0.0330716
\(229\) −4.12350e10 −0.990846 −0.495423 0.868652i \(-0.664987\pi\)
−0.495423 + 0.868652i \(0.664987\pi\)
\(230\) 4.55828e9 0.107405
\(231\) 0 0
\(232\) −1.46774e10 −0.332624
\(233\) −7.25284e10 −1.61215 −0.806077 0.591811i \(-0.798413\pi\)
−0.806077 + 0.591811i \(0.798413\pi\)
\(234\) 1.17358e10 0.255884
\(235\) 5.55233e9 0.118760
\(236\) 3.99032e10 0.837344
\(237\) 1.87615e8 0.00386278
\(238\) 0 0
\(239\) 8.27096e10 1.63970 0.819852 0.572576i \(-0.194056\pi\)
0.819852 + 0.572576i \(0.194056\pi\)
\(240\) 1.12148e9 0.0218193
\(241\) −5.66304e10 −1.08137 −0.540683 0.841226i \(-0.681834\pi\)
−0.540683 + 0.841226i \(0.681834\pi\)
\(242\) 6.54765e9 0.122720
\(243\) 9.07022e9 0.166874
\(244\) −1.00117e11 −1.80824
\(245\) 0 0
\(246\) 2.95269e8 0.00514054
\(247\) 4.49004e10 0.767562
\(248\) 3.06786e10 0.514996
\(249\) −3.18068e9 −0.0524352
\(250\) 1.14270e9 0.0185013
\(251\) 4.37000e10 0.694944 0.347472 0.937690i \(-0.387040\pi\)
0.347472 + 0.937690i \(0.387040\pi\)
\(252\) 0 0
\(253\) 9.55086e10 1.46555
\(254\) 2.14032e10 0.322646
\(255\) 1.83394e9 0.0271615
\(256\) 4.11661e10 0.599045
\(257\) 1.04178e11 1.48963 0.744815 0.667271i \(-0.232538\pi\)
0.744815 + 0.667271i \(0.232538\pi\)
\(258\) 5.81824e8 0.00817529
\(259\) 0 0
\(260\) 3.91424e10 0.531211
\(261\) −6.14022e10 −0.819033
\(262\) −9.23723e9 −0.121112
\(263\) −1.04346e11 −1.34485 −0.672424 0.740166i \(-0.734747\pi\)
−0.672424 + 0.740166i \(0.734747\pi\)
\(264\) −2.25287e9 −0.0285442
\(265\) −3.55242e10 −0.442505
\(266\) 0 0
\(267\) −1.59450e9 −0.0192010
\(268\) −4.35340e10 −0.515493
\(269\) −9.25092e10 −1.07721 −0.538604 0.842559i \(-0.681048\pi\)
−0.538604 + 0.842559i \(0.681048\pi\)
\(270\) −9.01027e8 −0.0103181
\(271\) 5.41823e10 0.610233 0.305117 0.952315i \(-0.401305\pi\)
0.305117 + 0.952315i \(0.401305\pi\)
\(272\) 8.57373e10 0.949751
\(273\) 0 0
\(274\) 1.36494e10 0.146297
\(275\) 2.39427e10 0.252450
\(276\) −5.98454e9 −0.0620783
\(277\) 1.18973e11 1.21420 0.607099 0.794627i \(-0.292333\pi\)
0.607099 + 0.794627i \(0.292333\pi\)
\(278\) −7.89011e8 −0.00792285
\(279\) 1.28343e11 1.26810
\(280\) 0 0
\(281\) −7.86550e10 −0.752572 −0.376286 0.926504i \(-0.622799\pi\)
−0.376286 + 0.926504i \(0.622799\pi\)
\(282\) 3.25844e8 0.00306824
\(283\) 8.35155e10 0.773977 0.386989 0.922085i \(-0.373515\pi\)
0.386989 + 0.922085i \(0.373515\pi\)
\(284\) −1.09895e11 −1.00241
\(285\) −1.72093e9 −0.0154512
\(286\) −3.66601e10 −0.324001
\(287\) 0 0
\(288\) −6.81485e10 −0.583701
\(289\) 2.16174e10 0.182290
\(290\) 9.15421e9 0.0760029
\(291\) −7.66236e9 −0.0626389
\(292\) 9.38240e10 0.755251
\(293\) 6.91745e10 0.548330 0.274165 0.961683i \(-0.411599\pi\)
0.274165 + 0.961683i \(0.411599\pi\)
\(294\) 0 0
\(295\) −5.08873e10 −0.391210
\(296\) 4.34187e10 0.328748
\(297\) −1.88790e10 −0.140791
\(298\) −4.82773e10 −0.354625
\(299\) −1.99122e11 −1.44078
\(300\) −1.50024e9 −0.0106934
\(301\) 0 0
\(302\) −3.04864e10 −0.210899
\(303\) −9.48684e9 −0.0646591
\(304\) −8.04542e10 −0.540278
\(305\) 1.27676e11 0.844814
\(306\) −3.43881e10 −0.224213
\(307\) −1.72821e10 −0.111039 −0.0555194 0.998458i \(-0.517681\pi\)
−0.0555194 + 0.998458i \(0.517681\pi\)
\(308\) 0 0
\(309\) −1.31347e10 −0.0819607
\(310\) −1.91341e10 −0.117674
\(311\) 2.24570e11 1.36123 0.680614 0.732642i \(-0.261713\pi\)
0.680614 + 0.732642i \(0.261713\pi\)
\(312\) 4.69690e9 0.0280618
\(313\) −6.15640e10 −0.362558 −0.181279 0.983432i \(-0.558024\pi\)
−0.181279 + 0.983432i \(0.558024\pi\)
\(314\) −5.00161e10 −0.290353
\(315\) 0 0
\(316\) −1.17334e10 −0.0661959
\(317\) −1.03866e11 −0.577705 −0.288853 0.957374i \(-0.593274\pi\)
−0.288853 + 0.957374i \(0.593274\pi\)
\(318\) −2.08477e9 −0.0114324
\(319\) 1.91806e11 1.03706
\(320\) −6.31119e10 −0.336462
\(321\) −9.27428e9 −0.0487537
\(322\) 0 0
\(323\) −1.31566e11 −0.672561
\(324\) −1.88097e11 −0.948263
\(325\) −4.99170e10 −0.248184
\(326\) 6.66030e10 0.326599
\(327\) −1.90070e10 −0.0919281
\(328\) −3.77574e10 −0.180123
\(329\) 0 0
\(330\) 1.40510e9 0.00652221
\(331\) 1.19600e11 0.547651 0.273826 0.961779i \(-0.411711\pi\)
0.273826 + 0.961779i \(0.411711\pi\)
\(332\) 1.98919e11 0.898575
\(333\) 1.81640e11 0.809491
\(334\) −1.30420e10 −0.0573436
\(335\) 5.55176e10 0.240840
\(336\) 0 0
\(337\) 1.78854e11 0.755379 0.377690 0.925932i \(-0.376719\pi\)
0.377690 + 0.925932i \(0.376719\pi\)
\(338\) 2.67967e10 0.111675
\(339\) 1.01165e10 0.0416038
\(340\) −1.14694e11 −0.465464
\(341\) −4.00913e11 −1.60567
\(342\) 3.22691e10 0.127547
\(343\) 0 0
\(344\) −7.44006e10 −0.286460
\(345\) 7.63189e9 0.0290032
\(346\) 8.04596e10 0.301811
\(347\) 2.90904e11 1.07713 0.538563 0.842585i \(-0.318967\pi\)
0.538563 + 0.842585i \(0.318967\pi\)
\(348\) −1.20185e10 −0.0439283
\(349\) 1.20156e11 0.433543 0.216772 0.976222i \(-0.430447\pi\)
0.216772 + 0.976222i \(0.430447\pi\)
\(350\) 0 0
\(351\) 3.93600e10 0.138412
\(352\) 2.12880e11 0.739084
\(353\) −2.68637e11 −0.920831 −0.460415 0.887704i \(-0.652300\pi\)
−0.460415 + 0.887704i \(0.652300\pi\)
\(354\) −2.98637e9 −0.0101072
\(355\) 1.40146e11 0.468330
\(356\) 9.97193e10 0.329044
\(357\) 0 0
\(358\) −1.08225e11 −0.348220
\(359\) 4.23529e11 1.34573 0.672865 0.739765i \(-0.265063\pi\)
0.672865 + 0.739765i \(0.265063\pi\)
\(360\) 5.75193e10 0.180490
\(361\) −1.99229e11 −0.617405
\(362\) −1.07156e11 −0.327966
\(363\) 1.09627e10 0.0331388
\(364\) 0 0
\(365\) −1.19651e11 −0.352856
\(366\) 7.49281e9 0.0218263
\(367\) 3.14338e11 0.904480 0.452240 0.891896i \(-0.350625\pi\)
0.452240 + 0.891896i \(0.350625\pi\)
\(368\) 3.56794e11 1.01415
\(369\) −1.57956e11 −0.443525
\(370\) −2.70800e10 −0.0751174
\(371\) 0 0
\(372\) 2.51211e10 0.0680135
\(373\) 4.22978e11 1.13143 0.565715 0.824601i \(-0.308600\pi\)
0.565715 + 0.824601i \(0.308600\pi\)
\(374\) 1.07420e11 0.283899
\(375\) 1.91321e9 0.00499600
\(376\) −4.16673e10 −0.107510
\(377\) −3.99888e11 −1.01954
\(378\) 0 0
\(379\) −4.54590e11 −1.13173 −0.565866 0.824497i \(-0.691458\pi\)
−0.565866 + 0.824497i \(0.691458\pi\)
\(380\) 1.07627e11 0.264785
\(381\) 3.58352e10 0.0871259
\(382\) −7.80068e10 −0.187433
\(383\) 2.56165e11 0.608311 0.304155 0.952622i \(-0.401626\pi\)
0.304155 + 0.952622i \(0.401626\pi\)
\(384\) −1.76391e10 −0.0413985
\(385\) 0 0
\(386\) −1.08097e11 −0.247839
\(387\) −3.11252e11 −0.705362
\(388\) 4.79201e11 1.07343
\(389\) 4.07620e9 0.00902572 0.00451286 0.999990i \(-0.498564\pi\)
0.00451286 + 0.999990i \(0.498564\pi\)
\(390\) −2.92943e9 −0.00641198
\(391\) 5.83461e11 1.26246
\(392\) 0 0
\(393\) −1.54658e10 −0.0327045
\(394\) −1.13346e11 −0.236958
\(395\) 1.49632e10 0.0309270
\(396\) 5.89421e11 1.20447
\(397\) −5.25740e11 −1.06222 −0.531109 0.847303i \(-0.678225\pi\)
−0.531109 + 0.847303i \(0.678225\pi\)
\(398\) 1.02226e11 0.204214
\(399\) 0 0
\(400\) 8.94433e10 0.174694
\(401\) −4.96583e11 −0.959051 −0.479526 0.877528i \(-0.659191\pi\)
−0.479526 + 0.877528i \(0.659191\pi\)
\(402\) 3.25810e9 0.00622225
\(403\) 8.35845e11 1.57853
\(404\) 5.93304e11 1.10805
\(405\) 2.39874e11 0.443032
\(406\) 0 0
\(407\) −5.67401e11 −1.02498
\(408\) −1.37627e10 −0.0245886
\(409\) 6.22845e11 1.10059 0.550294 0.834971i \(-0.314516\pi\)
0.550294 + 0.834971i \(0.314516\pi\)
\(410\) 2.35491e10 0.0411573
\(411\) 2.28531e10 0.0395054
\(412\) 8.21437e11 1.40455
\(413\) 0 0
\(414\) −1.43105e11 −0.239416
\(415\) −2.53675e11 −0.419818
\(416\) −4.43824e11 −0.726593
\(417\) −1.32104e9 −0.00213945
\(418\) −1.00801e11 −0.161500
\(419\) 9.02432e11 1.43038 0.715190 0.698930i \(-0.246340\pi\)
0.715190 + 0.698930i \(0.246340\pi\)
\(420\) 0 0
\(421\) 1.13768e12 1.76502 0.882509 0.470296i \(-0.155853\pi\)
0.882509 + 0.470296i \(0.155853\pi\)
\(422\) 3.61571e10 0.0554993
\(423\) −1.74313e11 −0.264727
\(424\) 2.66590e11 0.400587
\(425\) 1.46266e11 0.217466
\(426\) 8.22458e9 0.0120996
\(427\) 0 0
\(428\) 5.80010e11 0.835485
\(429\) −6.13797e10 −0.0874918
\(430\) 4.64033e10 0.0654547
\(431\) 4.68899e11 0.654533 0.327266 0.944932i \(-0.393873\pi\)
0.327266 + 0.944932i \(0.393873\pi\)
\(432\) −7.05268e10 −0.0974265
\(433\) −3.39136e11 −0.463638 −0.231819 0.972759i \(-0.574468\pi\)
−0.231819 + 0.972759i \(0.574468\pi\)
\(434\) 0 0
\(435\) 1.53268e10 0.0205235
\(436\) 1.18869e12 1.57536
\(437\) −5.47508e11 −0.718165
\(438\) −7.02182e9 −0.00911625
\(439\) 8.34074e11 1.07180 0.535901 0.844281i \(-0.319972\pi\)
0.535901 + 0.844281i \(0.319972\pi\)
\(440\) −1.79677e11 −0.228536
\(441\) 0 0
\(442\) −2.23956e11 −0.279101
\(443\) −8.87244e11 −1.09453 −0.547263 0.836961i \(-0.684330\pi\)
−0.547263 + 0.836961i \(0.684330\pi\)
\(444\) 3.55532e10 0.0434165
\(445\) −1.27169e11 −0.153731
\(446\) −1.01577e11 −0.121559
\(447\) −8.08304e10 −0.0957615
\(448\) 0 0
\(449\) −2.68409e9 −0.00311665 −0.00155832 0.999999i \(-0.500496\pi\)
−0.00155832 + 0.999999i \(0.500496\pi\)
\(450\) −3.58745e10 −0.0412410
\(451\) 4.93419e11 0.561593
\(452\) −6.32685e11 −0.712959
\(453\) −5.10431e10 −0.0569502
\(454\) −2.24509e11 −0.248017
\(455\) 0 0
\(456\) 1.29147e10 0.0139875
\(457\) 9.37032e11 1.00492 0.502460 0.864600i \(-0.332428\pi\)
0.502460 + 0.864600i \(0.332428\pi\)
\(458\) −1.93000e11 −0.204957
\(459\) −1.15332e11 −0.121281
\(460\) −4.77296e11 −0.497024
\(461\) 2.76095e11 0.284711 0.142356 0.989816i \(-0.454532\pi\)
0.142356 + 0.989816i \(0.454532\pi\)
\(462\) 0 0
\(463\) −1.47542e11 −0.149211 −0.0746055 0.997213i \(-0.523770\pi\)
−0.0746055 + 0.997213i \(0.523770\pi\)
\(464\) 7.16535e11 0.717640
\(465\) −3.20361e10 −0.0317762
\(466\) −3.39468e11 −0.333475
\(467\) −1.62968e12 −1.58554 −0.792770 0.609521i \(-0.791362\pi\)
−0.792770 + 0.609521i \(0.791362\pi\)
\(468\) −1.22886e12 −1.18412
\(469\) 0 0
\(470\) 2.59876e10 0.0245656
\(471\) −8.37416e10 −0.0784056
\(472\) 3.81882e11 0.354152
\(473\) 9.72278e11 0.893131
\(474\) 8.78130e8 0.000799018 0
\(475\) −1.37253e11 −0.123709
\(476\) 0 0
\(477\) 1.11527e12 0.986383
\(478\) 3.87121e11 0.339173
\(479\) −1.04475e12 −0.906779 −0.453389 0.891313i \(-0.649785\pi\)
−0.453389 + 0.891313i \(0.649785\pi\)
\(480\) 1.70108e10 0.0146265
\(481\) 1.18295e12 1.00766
\(482\) −2.65058e11 −0.223681
\(483\) 0 0
\(484\) −6.85603e11 −0.567895
\(485\) −6.11110e11 −0.501512
\(486\) 4.24531e10 0.0345180
\(487\) −6.55197e11 −0.527827 −0.263913 0.964546i \(-0.585013\pi\)
−0.263913 + 0.964546i \(0.585013\pi\)
\(488\) −9.58142e11 −0.764787
\(489\) 1.11513e11 0.0881933
\(490\) 0 0
\(491\) −1.69481e12 −1.31600 −0.657998 0.753019i \(-0.728597\pi\)
−0.657998 + 0.753019i \(0.728597\pi\)
\(492\) −3.09175e10 −0.0237882
\(493\) 1.17174e12 0.893348
\(494\) 2.10156e11 0.158771
\(495\) −7.51670e11 −0.562735
\(496\) −1.49770e12 −1.11111
\(497\) 0 0
\(498\) −1.48871e10 −0.0108462
\(499\) −9.93558e11 −0.717366 −0.358683 0.933459i \(-0.616774\pi\)
−0.358683 + 0.933459i \(0.616774\pi\)
\(500\) −1.19652e11 −0.0856157
\(501\) −2.18362e10 −0.0154848
\(502\) 2.04537e11 0.143749
\(503\) −2.36079e11 −0.164438 −0.0822188 0.996614i \(-0.526201\pi\)
−0.0822188 + 0.996614i \(0.526201\pi\)
\(504\) 0 0
\(505\) −7.56621e11 −0.517687
\(506\) 4.47027e11 0.303149
\(507\) 4.48655e10 0.0301562
\(508\) −2.24112e12 −1.49306
\(509\) −6.12223e11 −0.404277 −0.202139 0.979357i \(-0.564789\pi\)
−0.202139 + 0.979357i \(0.564789\pi\)
\(510\) 8.58374e9 0.00561838
\(511\) 0 0
\(512\) 1.34513e12 0.865065
\(513\) 1.08225e11 0.0689921
\(514\) 4.87605e11 0.308130
\(515\) −1.04755e12 −0.656211
\(516\) −6.09227e10 −0.0378316
\(517\) 5.44514e11 0.335198
\(518\) 0 0
\(519\) 1.34713e11 0.0814998
\(520\) 3.74600e11 0.224674
\(521\) 3.50205e11 0.208235 0.104117 0.994565i \(-0.466798\pi\)
0.104117 + 0.994565i \(0.466798\pi\)
\(522\) −2.87392e11 −0.169417
\(523\) 2.61442e12 1.52798 0.763989 0.645229i \(-0.223238\pi\)
0.763989 + 0.645229i \(0.223238\pi\)
\(524\) 9.67229e11 0.560452
\(525\) 0 0
\(526\) −4.88388e11 −0.278182
\(527\) −2.44917e12 −1.38316
\(528\) 1.09983e11 0.0615845
\(529\) 6.26903e11 0.348057
\(530\) −1.66271e11 −0.0915323
\(531\) 1.59758e12 0.872044
\(532\) 0 0
\(533\) −1.02871e12 −0.552102
\(534\) −7.46303e9 −0.00397173
\(535\) −7.39669e11 −0.390342
\(536\) −4.16629e11 −0.218026
\(537\) −1.81200e11 −0.0940318
\(538\) −4.32988e11 −0.222821
\(539\) 0 0
\(540\) 9.43463e10 0.0477477
\(541\) −1.47804e12 −0.741821 −0.370911 0.928669i \(-0.620954\pi\)
−0.370911 + 0.928669i \(0.620954\pi\)
\(542\) 2.53600e11 0.126227
\(543\) −1.79411e11 −0.0885626
\(544\) 1.30048e12 0.636663
\(545\) −1.51590e12 −0.736014
\(546\) 0 0
\(547\) 7.35485e11 0.351262 0.175631 0.984456i \(-0.443804\pi\)
0.175631 + 0.984456i \(0.443804\pi\)
\(548\) −1.42922e12 −0.676999
\(549\) −4.00834e12 −1.88317
\(550\) 1.12064e11 0.0522195
\(551\) −1.09954e12 −0.508193
\(552\) −5.72732e10 −0.0262558
\(553\) 0 0
\(554\) 5.56852e11 0.251157
\(555\) −4.53399e10 −0.0202844
\(556\) 8.26172e10 0.0366635
\(557\) −9.41535e11 −0.414465 −0.207233 0.978292i \(-0.566446\pi\)
−0.207233 + 0.978292i \(0.566446\pi\)
\(558\) 6.00706e11 0.262306
\(559\) −2.02706e12 −0.878037
\(560\) 0 0
\(561\) 1.79853e11 0.0766630
\(562\) −3.68144e11 −0.155670
\(563\) −3.00632e12 −1.26110 −0.630548 0.776151i \(-0.717170\pi\)
−0.630548 + 0.776151i \(0.717170\pi\)
\(564\) −3.41191e10 −0.0141985
\(565\) 8.06843e11 0.333097
\(566\) 3.90893e11 0.160097
\(567\) 0 0
\(568\) −1.05172e12 −0.423966
\(569\) 3.42996e12 1.37178 0.685889 0.727706i \(-0.259413\pi\)
0.685889 + 0.727706i \(0.259413\pi\)
\(570\) −8.05481e9 −0.00319609
\(571\) −3.90075e12 −1.53563 −0.767814 0.640673i \(-0.778656\pi\)
−0.767814 + 0.640673i \(0.778656\pi\)
\(572\) 3.83867e12 1.49933
\(573\) −1.30606e11 −0.0506137
\(574\) 0 0
\(575\) 6.08680e11 0.232212
\(576\) 1.98137e12 0.750006
\(577\) −6.26050e11 −0.235135 −0.117568 0.993065i \(-0.537510\pi\)
−0.117568 + 0.993065i \(0.537510\pi\)
\(578\) 1.01180e11 0.0377069
\(579\) −1.80986e11 −0.0669254
\(580\) −9.58535e11 −0.351708
\(581\) 0 0
\(582\) −3.58636e10 −0.0129569
\(583\) −3.48383e12 −1.24896
\(584\) 8.97914e11 0.319431
\(585\) 1.56712e12 0.553225
\(586\) 3.23771e11 0.113422
\(587\) −1.68145e12 −0.584538 −0.292269 0.956336i \(-0.594410\pi\)
−0.292269 + 0.956336i \(0.594410\pi\)
\(588\) 0 0
\(589\) 2.29825e12 0.786827
\(590\) −2.38177e11 −0.0809220
\(591\) −1.89774e11 −0.0639871
\(592\) −2.11965e12 −0.709279
\(593\) 1.58522e12 0.526434 0.263217 0.964737i \(-0.415217\pi\)
0.263217 + 0.964737i \(0.415217\pi\)
\(594\) −8.83631e10 −0.0291227
\(595\) 0 0
\(596\) 5.05510e12 1.64105
\(597\) 1.71156e11 0.0551452
\(598\) −9.31986e11 −0.298026
\(599\) −4.78087e12 −1.51735 −0.758675 0.651469i \(-0.774153\pi\)
−0.758675 + 0.651469i \(0.774153\pi\)
\(600\) −1.43576e10 −0.00452274
\(601\) −2.13180e10 −0.00666516 −0.00333258 0.999994i \(-0.501061\pi\)
−0.00333258 + 0.999994i \(0.501061\pi\)
\(602\) 0 0
\(603\) −1.74295e12 −0.536855
\(604\) 3.19222e12 0.975948
\(605\) 8.74327e11 0.265323
\(606\) −4.44030e10 −0.0133748
\(607\) −3.71643e12 −1.11116 −0.555580 0.831463i \(-0.687504\pi\)
−0.555580 + 0.831463i \(0.687504\pi\)
\(608\) −1.22035e12 −0.362174
\(609\) 0 0
\(610\) 5.97588e11 0.174750
\(611\) −1.13523e12 −0.329533
\(612\) 3.60077e12 1.03756
\(613\) 2.28399e12 0.653315 0.326657 0.945143i \(-0.394078\pi\)
0.326657 + 0.945143i \(0.394078\pi\)
\(614\) −8.08889e10 −0.0229684
\(615\) 3.94281e10 0.0111139
\(616\) 0 0
\(617\) 4.11730e12 1.14374 0.571872 0.820343i \(-0.306217\pi\)
0.571872 + 0.820343i \(0.306217\pi\)
\(618\) −6.14766e10 −0.0169536
\(619\) −5.99191e12 −1.64043 −0.820214 0.572057i \(-0.806146\pi\)
−0.820214 + 0.572057i \(0.806146\pi\)
\(620\) 2.00353e12 0.544544
\(621\) −4.79950e11 −0.129504
\(622\) 1.05110e12 0.281571
\(623\) 0 0
\(624\) −2.29298e11 −0.0605437
\(625\) 1.52588e11 0.0400000
\(626\) −2.88150e11 −0.0749952
\(627\) −1.68771e11 −0.0436107
\(628\) 5.23717e12 1.34363
\(629\) −3.46625e12 −0.882940
\(630\) 0 0
\(631\) 4.14396e12 1.04060 0.520300 0.853984i \(-0.325820\pi\)
0.520300 + 0.853984i \(0.325820\pi\)
\(632\) −1.12291e11 −0.0279974
\(633\) 6.05377e10 0.0149868
\(634\) −4.86143e11 −0.119498
\(635\) 2.85803e12 0.697565
\(636\) 2.18296e11 0.0529040
\(637\) 0 0
\(638\) 8.97747e11 0.214517
\(639\) −4.39981e12 −1.04395
\(640\) −1.40680e12 −0.331453
\(641\) −3.87177e12 −0.905833 −0.452917 0.891553i \(-0.649617\pi\)
−0.452917 + 0.891553i \(0.649617\pi\)
\(642\) −4.34082e10 −0.0100847
\(643\) −6.81081e12 −1.57127 −0.785633 0.618693i \(-0.787662\pi\)
−0.785633 + 0.618693i \(0.787662\pi\)
\(644\) 0 0
\(645\) 7.76927e10 0.0176751
\(646\) −6.15793e11 −0.139120
\(647\) −2.40797e12 −0.540233 −0.270117 0.962828i \(-0.587062\pi\)
−0.270117 + 0.962828i \(0.587062\pi\)
\(648\) −1.80012e12 −0.401065
\(649\) −4.99048e12 −1.10418
\(650\) −2.33636e11 −0.0513370
\(651\) 0 0
\(652\) −6.97399e12 −1.51136
\(653\) −4.90892e12 −1.05652 −0.528259 0.849083i \(-0.677155\pi\)
−0.528259 + 0.849083i \(0.677155\pi\)
\(654\) −8.89620e10 −0.0190154
\(655\) −1.23348e12 −0.261845
\(656\) 1.84328e12 0.388618
\(657\) 3.75638e12 0.786549
\(658\) 0 0
\(659\) −3.36518e11 −0.0695062 −0.0347531 0.999396i \(-0.511064\pi\)
−0.0347531 + 0.999396i \(0.511064\pi\)
\(660\) −1.47128e11 −0.0301819
\(661\) 5.58058e11 0.113703 0.0568516 0.998383i \(-0.481894\pi\)
0.0568516 + 0.998383i \(0.481894\pi\)
\(662\) 5.59785e11 0.113282
\(663\) −3.74968e11 −0.0753674
\(664\) 1.90369e12 0.380049
\(665\) 0 0
\(666\) 8.50164e11 0.167444
\(667\) 4.87617e12 0.953922
\(668\) 1.36563e12 0.265361
\(669\) −1.70070e11 −0.0328254
\(670\) 2.59849e11 0.0498179
\(671\) 1.25211e13 2.38447
\(672\) 0 0
\(673\) −3.26341e12 −0.613202 −0.306601 0.951838i \(-0.599192\pi\)
−0.306601 + 0.951838i \(0.599192\pi\)
\(674\) 8.37126e11 0.156250
\(675\) −1.20317e11 −0.0223079
\(676\) −2.80587e12 −0.516782
\(677\) 2.71325e12 0.496410 0.248205 0.968708i \(-0.420159\pi\)
0.248205 + 0.968708i \(0.420159\pi\)
\(678\) 4.73503e10 0.00860577
\(679\) 0 0
\(680\) −1.09764e12 −0.196866
\(681\) −3.75893e11 −0.0669734
\(682\) −1.87647e12 −0.332133
\(683\) 2.42887e12 0.427082 0.213541 0.976934i \(-0.431500\pi\)
0.213541 + 0.976934i \(0.431500\pi\)
\(684\) −3.37889e12 −0.590230
\(685\) 1.82264e12 0.316296
\(686\) 0 0
\(687\) −3.23139e11 −0.0553457
\(688\) 3.63216e12 0.618041
\(689\) 7.26329e12 1.22785
\(690\) 3.57210e10 0.00599933
\(691\) −5.97125e12 −0.996355 −0.498178 0.867075i \(-0.665997\pi\)
−0.498178 + 0.867075i \(0.665997\pi\)
\(692\) −8.42491e12 −1.39665
\(693\) 0 0
\(694\) 1.36157e12 0.222804
\(695\) −1.05359e11 −0.0171293
\(696\) −1.15020e11 −0.0185793
\(697\) 3.01429e12 0.483768
\(698\) 5.62391e11 0.0896786
\(699\) −5.68370e11 −0.0900500
\(700\) 0 0
\(701\) −4.18398e12 −0.654423 −0.327212 0.944951i \(-0.606109\pi\)
−0.327212 + 0.944951i \(0.606109\pi\)
\(702\) 1.84224e11 0.0286305
\(703\) 3.25266e12 0.502272
\(704\) −6.18934e12 −0.949659
\(705\) 4.35110e10 0.00663357
\(706\) −1.25735e12 −0.190474
\(707\) 0 0
\(708\) 3.12702e11 0.0467715
\(709\) −8.83893e12 −1.31369 −0.656843 0.754027i \(-0.728109\pi\)
−0.656843 + 0.754027i \(0.728109\pi\)
\(710\) 6.55950e11 0.0968742
\(711\) −4.69763e11 −0.0689391
\(712\) 9.54333e11 0.139168
\(713\) −1.01922e13 −1.47694
\(714\) 0 0
\(715\) −4.89533e12 −0.700495
\(716\) 1.13322e13 1.61141
\(717\) 6.48155e11 0.0915889
\(718\) 1.98232e12 0.278365
\(719\) 2.92264e12 0.407845 0.203922 0.978987i \(-0.434631\pi\)
0.203922 + 0.978987i \(0.434631\pi\)
\(720\) −2.80803e12 −0.389409
\(721\) 0 0
\(722\) −9.32489e11 −0.127710
\(723\) −4.43785e11 −0.0604019
\(724\) 1.12203e13 1.51769
\(725\) 1.22239e12 0.164319
\(726\) 5.13107e10 0.00685478
\(727\) 1.21723e13 1.61610 0.808048 0.589117i \(-0.200524\pi\)
0.808048 + 0.589117i \(0.200524\pi\)
\(728\) 0 0
\(729\) −7.48322e12 −0.981329
\(730\) −5.60024e11 −0.0729884
\(731\) 5.93963e12 0.769363
\(732\) −7.84571e11 −0.101003
\(733\) −1.08103e13 −1.38315 −0.691574 0.722305i \(-0.743082\pi\)
−0.691574 + 0.722305i \(0.743082\pi\)
\(734\) 1.47125e12 0.187092
\(735\) 0 0
\(736\) 5.41192e12 0.679832
\(737\) 5.44457e12 0.679767
\(738\) −7.39313e11 −0.0917434
\(739\) 9.83935e12 1.21357 0.606787 0.794864i \(-0.292458\pi\)
0.606787 + 0.794864i \(0.292458\pi\)
\(740\) 2.83554e12 0.347610
\(741\) 3.51863e11 0.0428737
\(742\) 0 0
\(743\) −1.84462e12 −0.222053 −0.111027 0.993817i \(-0.535414\pi\)
−0.111027 + 0.993817i \(0.535414\pi\)
\(744\) 2.40414e11 0.0287661
\(745\) −6.44661e12 −0.766705
\(746\) 1.97974e12 0.234037
\(747\) 7.96400e12 0.935812
\(748\) −1.12480e13 −1.31376
\(749\) 0 0
\(750\) 8.95477e9 0.00103342
\(751\) 1.55156e13 1.77987 0.889936 0.456085i \(-0.150749\pi\)
0.889936 + 0.456085i \(0.150749\pi\)
\(752\) 2.03415e12 0.231955
\(753\) 3.42456e11 0.0388174
\(754\) −1.87167e12 −0.210891
\(755\) −4.07094e12 −0.455967
\(756\) 0 0
\(757\) −1.10594e12 −0.122406 −0.0612029 0.998125i \(-0.519494\pi\)
−0.0612029 + 0.998125i \(0.519494\pi\)
\(758\) −2.12770e12 −0.234099
\(759\) 7.48455e11 0.0818611
\(760\) 1.03001e12 0.111990
\(761\) −1.94850e12 −0.210606 −0.105303 0.994440i \(-0.533581\pi\)
−0.105303 + 0.994440i \(0.533581\pi\)
\(762\) 1.67726e11 0.0180220
\(763\) 0 0
\(764\) 8.16807e12 0.867360
\(765\) −4.59194e12 −0.484752
\(766\) 1.19898e12 0.125829
\(767\) 1.04044e13 1.08552
\(768\) 3.22599e11 0.0334609
\(769\) 1.56599e13 1.61481 0.807405 0.589998i \(-0.200871\pi\)
0.807405 + 0.589998i \(0.200871\pi\)
\(770\) 0 0
\(771\) 8.16395e11 0.0832062
\(772\) 1.13188e13 1.14689
\(773\) −1.42340e13 −1.43390 −0.716949 0.697126i \(-0.754462\pi\)
−0.716949 + 0.697126i \(0.754462\pi\)
\(774\) −1.45681e12 −0.145904
\(775\) −2.55504e12 −0.254413
\(776\) 4.58605e12 0.454005
\(777\) 0 0
\(778\) 1.90786e10 0.00186697
\(779\) −2.82855e12 −0.275198
\(780\) 3.06740e11 0.0296719
\(781\) 1.37440e13 1.32185
\(782\) 2.73088e12 0.261139
\(783\) −9.63864e11 −0.0916406
\(784\) 0 0
\(785\) −6.67880e12 −0.627747
\(786\) −7.23877e10 −0.00676493
\(787\) −1.81218e13 −1.68390 −0.841949 0.539556i \(-0.818592\pi\)
−0.841949 + 0.539556i \(0.818592\pi\)
\(788\) 1.18684e13 1.09654
\(789\) −8.17706e11 −0.0751191
\(790\) 7.00351e10 0.00639726
\(791\) 0 0
\(792\) 5.64088e12 0.509429
\(793\) −2.61047e13 −2.34418
\(794\) −2.46072e12 −0.219720
\(795\) −2.78386e11 −0.0247170
\(796\) −1.07040e13 −0.945015
\(797\) 2.21087e13 1.94089 0.970446 0.241319i \(-0.0775799\pi\)
0.970446 + 0.241319i \(0.0775799\pi\)
\(798\) 0 0
\(799\) 3.32643e12 0.288747
\(800\) 1.35670e12 0.117106
\(801\) 3.99241e12 0.342680
\(802\) −2.32425e12 −0.198380
\(803\) −1.17341e13 −0.995930
\(804\) −3.41155e11 −0.0287939
\(805\) 0 0
\(806\) 3.91216e12 0.326520
\(807\) −7.24950e11 −0.0601696
\(808\) 5.67803e12 0.468648
\(809\) 1.80822e12 0.148417 0.0742084 0.997243i \(-0.476357\pi\)
0.0742084 + 0.997243i \(0.476357\pi\)
\(810\) 1.12273e12 0.0916413
\(811\) 1.59062e13 1.29113 0.645567 0.763703i \(-0.276621\pi\)
0.645567 + 0.763703i \(0.276621\pi\)
\(812\) 0 0
\(813\) 4.24601e11 0.0340858
\(814\) −2.65572e12 −0.212017
\(815\) 8.89370e12 0.706112
\(816\) 6.71882e11 0.0530502
\(817\) −5.57363e12 −0.437662
\(818\) 2.91522e12 0.227657
\(819\) 0 0
\(820\) −2.46582e12 −0.190458
\(821\) −1.49953e13 −1.15189 −0.575945 0.817489i \(-0.695366\pi\)
−0.575945 + 0.817489i \(0.695366\pi\)
\(822\) 1.06964e11 0.00817171
\(823\) 2.41121e13 1.83204 0.916020 0.401132i \(-0.131383\pi\)
0.916020 + 0.401132i \(0.131383\pi\)
\(824\) 7.86131e12 0.594049
\(825\) 1.87627e11 0.0141011
\(826\) 0 0
\(827\) −3.51697e12 −0.261453 −0.130727 0.991418i \(-0.541731\pi\)
−0.130727 + 0.991418i \(0.541731\pi\)
\(828\) 1.49845e13 1.10791
\(829\) 2.21258e13 1.62706 0.813531 0.581522i \(-0.197543\pi\)
0.813531 + 0.581522i \(0.197543\pi\)
\(830\) −1.18732e12 −0.0868394
\(831\) 9.32333e11 0.0678214
\(832\) 1.29039e13 0.933610
\(833\) 0 0
\(834\) −6.18310e9 −0.000442546 0
\(835\) −1.74154e12 −0.123978
\(836\) 1.05549e13 0.747351
\(837\) 2.01467e12 0.141886
\(838\) 4.22382e12 0.295875
\(839\) −4.84005e12 −0.337226 −0.168613 0.985682i \(-0.553929\pi\)
−0.168613 + 0.985682i \(0.553929\pi\)
\(840\) 0 0
\(841\) −4.71452e12 −0.324979
\(842\) 5.32488e12 0.365095
\(843\) −6.16381e11 −0.0420364
\(844\) −3.78600e12 −0.256827
\(845\) 3.57824e12 0.241443
\(846\) −8.15870e11 −0.0547589
\(847\) 0 0
\(848\) −1.30146e13 −0.864272
\(849\) 6.54471e11 0.0432320
\(850\) 6.84595e11 0.0449830
\(851\) −1.44247e13 −0.942808
\(852\) −8.61194e11 −0.0559916
\(853\) −2.65572e13 −1.71756 −0.858779 0.512345i \(-0.828777\pi\)
−0.858779 + 0.512345i \(0.828777\pi\)
\(854\) 0 0
\(855\) 4.30899e12 0.275758
\(856\) 5.55081e12 0.353366
\(857\) 1.86512e13 1.18112 0.590560 0.806994i \(-0.298907\pi\)
0.590560 + 0.806994i \(0.298907\pi\)
\(858\) −2.87287e11 −0.0180977
\(859\) −1.19252e13 −0.747305 −0.373652 0.927569i \(-0.621895\pi\)
−0.373652 + 0.927569i \(0.621895\pi\)
\(860\) −4.85888e12 −0.302895
\(861\) 0 0
\(862\) 2.19468e12 0.135390
\(863\) −1.97885e13 −1.21441 −0.607205 0.794545i \(-0.707709\pi\)
−0.607205 + 0.794545i \(0.707709\pi\)
\(864\) −1.06977e12 −0.0653096
\(865\) 1.07440e13 0.652521
\(866\) −1.58732e12 −0.0959037
\(867\) 1.69405e11 0.0101822
\(868\) 0 0
\(869\) 1.46743e12 0.0872909
\(870\) 7.17371e10 0.00424529
\(871\) −1.13511e13 −0.668279
\(872\) 1.13760e13 0.666293
\(873\) 1.91855e13 1.11792
\(874\) −2.56261e12 −0.148553
\(875\) 0 0
\(876\) 7.35254e11 0.0421860
\(877\) −3.21002e12 −0.183235 −0.0916177 0.995794i \(-0.529204\pi\)
−0.0916177 + 0.995794i \(0.529204\pi\)
\(878\) 3.90387e12 0.221702
\(879\) 5.42087e11 0.0306281
\(880\) 8.77164e12 0.493070
\(881\) 3.43067e13 1.91862 0.959308 0.282363i \(-0.0911182\pi\)
0.959308 + 0.282363i \(0.0911182\pi\)
\(882\) 0 0
\(883\) −2.27401e13 −1.25884 −0.629418 0.777067i \(-0.716707\pi\)
−0.629418 + 0.777067i \(0.716707\pi\)
\(884\) 2.34504e13 1.29156
\(885\) −3.98779e11 −0.0218518
\(886\) −4.15274e12 −0.226403
\(887\) −3.40833e13 −1.84878 −0.924390 0.381448i \(-0.875426\pi\)
−0.924390 + 0.381448i \(0.875426\pi\)
\(888\) 3.40251e11 0.0183629
\(889\) 0 0
\(890\) −5.95212e11 −0.0317993
\(891\) 2.35243e13 1.25045
\(892\) 1.06361e13 0.562524
\(893\) −3.12145e12 −0.164257
\(894\) −3.78326e11 −0.0198083
\(895\) −1.44516e13 −0.752857
\(896\) 0 0
\(897\) −1.56042e12 −0.0804776
\(898\) −1.25628e10 −0.000644680 0
\(899\) −2.04685e13 −1.04512
\(900\) 3.75641e12 0.190845
\(901\) −2.12827e13 −1.07588
\(902\) 2.30944e12 0.116166
\(903\) 0 0
\(904\) −6.05492e12 −0.301544
\(905\) −1.43089e13 −0.709068
\(906\) −2.38907e11 −0.0117802
\(907\) −2.39990e13 −1.17750 −0.588750 0.808315i \(-0.700380\pi\)
−0.588750 + 0.808315i \(0.700380\pi\)
\(908\) 2.35082e13 1.14771
\(909\) 2.37538e13 1.15397
\(910\) 0 0
\(911\) 1.81078e13 0.871029 0.435515 0.900182i \(-0.356566\pi\)
0.435515 + 0.900182i \(0.356566\pi\)
\(912\) −6.30481e11 −0.0301783
\(913\) −2.48777e13 −1.18493
\(914\) 4.38577e12 0.207868
\(915\) 1.00054e12 0.0471888
\(916\) 2.02090e13 0.948451
\(917\) 0 0
\(918\) −5.39809e11 −0.0250869
\(919\) −1.93468e12 −0.0894724 −0.0447362 0.998999i \(-0.514245\pi\)
−0.0447362 + 0.998999i \(0.514245\pi\)
\(920\) −4.56782e12 −0.210215
\(921\) −1.35432e11 −0.00620229
\(922\) 1.29226e12 0.0588926
\(923\) −2.86542e13 −1.29951
\(924\) 0 0
\(925\) −3.61607e12 −0.162405
\(926\) −6.90568e11 −0.0308644
\(927\) 3.28874e13 1.46275
\(928\) 1.08686e13 0.481068
\(929\) −2.56977e13 −1.13194 −0.565971 0.824425i \(-0.691499\pi\)
−0.565971 + 0.824425i \(0.691499\pi\)
\(930\) −1.49945e11 −0.00657291
\(931\) 0 0
\(932\) 3.55457e13 1.54317
\(933\) 1.75985e12 0.0760341
\(934\) −7.62771e12 −0.327969
\(935\) 1.43442e13 0.613795
\(936\) −1.17604e13 −0.500819
\(937\) −2.26453e13 −0.959731 −0.479865 0.877342i \(-0.659314\pi\)
−0.479865 + 0.877342i \(0.659314\pi\)
\(938\) 0 0
\(939\) −4.82447e11 −0.0202514
\(940\) −2.72116e12 −0.113679
\(941\) −2.28097e13 −0.948345 −0.474173 0.880432i \(-0.657253\pi\)
−0.474173 + 0.880432i \(0.657253\pi\)
\(942\) −3.91952e11 −0.0162182
\(943\) 1.25439e13 0.516570
\(944\) −1.86431e13 −0.764088
\(945\) 0 0
\(946\) 4.55074e12 0.184745
\(947\) 3.24218e12 0.130997 0.0654987 0.997853i \(-0.479136\pi\)
0.0654987 + 0.997853i \(0.479136\pi\)
\(948\) −9.19488e10 −0.00369750
\(949\) 2.44638e13 0.979099
\(950\) −6.42410e11 −0.0255892
\(951\) −8.13946e11 −0.0322689
\(952\) 0 0
\(953\) −4.96092e13 −1.94825 −0.974124 0.226014i \(-0.927430\pi\)
−0.974124 + 0.226014i \(0.927430\pi\)
\(954\) 5.21999e12 0.204034
\(955\) −1.04165e13 −0.405234
\(956\) −4.05354e13 −1.56955
\(957\) 1.50309e12 0.0579271
\(958\) −4.88993e12 −0.187567
\(959\) 0 0
\(960\) −4.94578e11 −0.0187938
\(961\) 1.63436e13 0.618149
\(962\) 5.53678e12 0.208434
\(963\) 2.32216e13 0.870108
\(964\) 2.77542e13 1.03510
\(965\) −1.44345e13 −0.535832
\(966\) 0 0
\(967\) −2.45015e13 −0.901100 −0.450550 0.892751i \(-0.648772\pi\)
−0.450550 + 0.892751i \(0.648772\pi\)
\(968\) −6.56135e12 −0.240190
\(969\) −1.03102e12 −0.0375672
\(970\) −2.86029e12 −0.103738
\(971\) 1.85016e13 0.667917 0.333958 0.942588i \(-0.391616\pi\)
0.333958 + 0.942588i \(0.391616\pi\)
\(972\) −4.44525e12 −0.159734
\(973\) 0 0
\(974\) −3.06664e12 −0.109181
\(975\) −3.91176e11 −0.0138628
\(976\) 4.67755e13 1.65004
\(977\) −2.19913e13 −0.772193 −0.386096 0.922458i \(-0.626177\pi\)
−0.386096 + 0.922458i \(0.626177\pi\)
\(978\) 5.21936e11 0.0182428
\(979\) −1.24714e13 −0.433902
\(980\) 0 0
\(981\) 4.75909e13 1.64064
\(982\) −7.93255e12 −0.272214
\(983\) −1.25865e12 −0.0429946 −0.0214973 0.999769i \(-0.506843\pi\)
−0.0214973 + 0.999769i \(0.506843\pi\)
\(984\) −2.95887e11 −0.0100611
\(985\) −1.51354e13 −0.512307
\(986\) 5.48432e12 0.184789
\(987\) 0 0
\(988\) −2.20054e13 −0.734721
\(989\) 2.47176e13 0.821530
\(990\) −3.51818e12 −0.116402
\(991\) −5.19617e12 −0.171140 −0.0855701 0.996332i \(-0.527271\pi\)
−0.0855701 + 0.996332i \(0.527271\pi\)
\(992\) −2.27174e13 −0.744829
\(993\) 9.37245e11 0.0305901
\(994\) 0 0
\(995\) 1.36505e13 0.441515
\(996\) 1.55883e12 0.0501917
\(997\) −5.63563e12 −0.180640 −0.0903200 0.995913i \(-0.528789\pi\)
−0.0903200 + 0.995913i \(0.528789\pi\)
\(998\) −4.65034e12 −0.148387
\(999\) 2.85130e12 0.0905730
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 245.10.a.f.1.3 5
7.6 odd 2 35.10.a.d.1.3 5
21.20 even 2 315.10.a.j.1.3 5
35.13 even 4 175.10.b.f.99.5 10
35.27 even 4 175.10.b.f.99.6 10
35.34 odd 2 175.10.a.f.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.10.a.d.1.3 5 7.6 odd 2
175.10.a.f.1.3 5 35.34 odd 2
175.10.b.f.99.5 10 35.13 even 4
175.10.b.f.99.6 10 35.27 even 4
245.10.a.f.1.3 5 1.1 even 1 trivial
315.10.a.j.1.3 5 21.20 even 2