Properties

Label 35.10.a.d.1.3
Level 3535
Weight 1010
Character 35.1
Self dual yes
Analytic conductor 18.02618.026
Analytic rank 00
Dimension 55
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [35,10,Mod(1,35)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(35, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("35.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: N N == 35=57 35 = 5 \cdot 7
Weight: k k == 10 10
Character orbit: [χ][\chi] == 35.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 18.026254265718.0262542657
Analytic rank: 00
Dimension: 55
Coefficient field: Q[x]/(x5)\mathbb{Q}[x]/(x^{5} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x52x41694x3+7420x2+583584x2721600 x^{5} - 2x^{4} - 1694x^{3} + 7420x^{2} + 583584x - 2721600 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 235 2^{3}\cdot 5
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.3
Root 4.680494.68049 of defining polynomial
Character χ\chi == 35.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+4.68049q27.83652q3490.093q4625.000q536.6787q6+2401.00q74690.29q819621.6q92925.31q10+61293.3q11+3840.62q12+127788.q13+11237.9q14+4897.82q15+228975.q16374440.q1791838.6q18+351367.q19+306308.q2018815.5q21+286883.q22+1.55822e6q23+36755.5q24+390625.q25+598109.q26+308011.q271.17671e6q28+3.12932e6q29+22924.2q30+6.54089e6q31+3.47314e6q32480326.q331.75256e6q341.50062e6q35+9.61640e6q369.25714e6q37+1.64457e6q381.00141e6q39+2.93143e6q408.05013e6q4188065.6q42+1.58627e7q433.00394e7q44+1.22635e7q45+7.29324e6q468.88373e6q471.79436e6q48+5.76480e6q49+1.82832e6q50+2.93431e6q516.26278e7q525.68387e7q53+1.44164e6q543.83083e7q551.12614e7q562.75349e6q57+1.46467e7q58+8.14197e7q592.40039e6q602.04282e8q61+3.06146e7q624.71114e7q631.00979e8q647.98673e7q652.24816e6q66+8.88281e7q67+1.83510e8q681.22110e7q697.02366e6q70+2.24233e8q71+9.20309e7q72+1.91441e8q734.33280e7q743.06114e6q751.72203e8q76+1.47165e8q774.68709e6q78+2.39411e7q791.43109e8q80+3.83798e8q813.76785e7q82+4.05879e8q83+9.22133e6q84+2.34025e8q85+7.42452e7q862.45229e7q872.87483e8q88+2.03470e8q89+5.73992e7q90+3.06818e8q917.63674e8q925.12578e7q934.15802e7q942.19604e8q952.72173e7q96+9.77776e8q97+2.69821e7q981.20267e9q99+O(q100)q+4.68049 q^{2} -7.83652 q^{3} -490.093 q^{4} -625.000 q^{5} -36.6787 q^{6} +2401.00 q^{7} -4690.29 q^{8} -19621.6 q^{9} -2925.31 q^{10} +61293.3 q^{11} +3840.62 q^{12} +127788. q^{13} +11237.9 q^{14} +4897.82 q^{15} +228975. q^{16} -374440. q^{17} -91838.6 q^{18} +351367. q^{19} +306308. q^{20} -18815.5 q^{21} +286883. q^{22} +1.55822e6 q^{23} +36755.5 q^{24} +390625. q^{25} +598109. q^{26} +308011. q^{27} -1.17671e6 q^{28} +3.12932e6 q^{29} +22924.2 q^{30} +6.54089e6 q^{31} +3.47314e6 q^{32} -480326. q^{33} -1.75256e6 q^{34} -1.50062e6 q^{35} +9.61640e6 q^{36} -9.25714e6 q^{37} +1.64457e6 q^{38} -1.00141e6 q^{39} +2.93143e6 q^{40} -8.05013e6 q^{41} -88065.6 q^{42} +1.58627e7 q^{43} -3.00394e7 q^{44} +1.22635e7 q^{45} +7.29324e6 q^{46} -8.88373e6 q^{47} -1.79436e6 q^{48} +5.76480e6 q^{49} +1.82832e6 q^{50} +2.93431e6 q^{51} -6.26278e7 q^{52} -5.68387e7 q^{53} +1.44164e6 q^{54} -3.83083e7 q^{55} -1.12614e7 q^{56} -2.75349e6 q^{57} +1.46467e7 q^{58} +8.14197e7 q^{59} -2.40039e6 q^{60} -2.04282e8 q^{61} +3.06146e7 q^{62} -4.71114e7 q^{63} -1.00979e8 q^{64} -7.98673e7 q^{65} -2.24816e6 q^{66} +8.88281e7 q^{67} +1.83510e8 q^{68} -1.22110e7 q^{69} -7.02366e6 q^{70} +2.24233e8 q^{71} +9.20309e7 q^{72} +1.91441e8 q^{73} -4.33280e7 q^{74} -3.06114e6 q^{75} -1.72203e8 q^{76} +1.47165e8 q^{77} -4.68709e6 q^{78} +2.39411e7 q^{79} -1.43109e8 q^{80} +3.83798e8 q^{81} -3.76785e7 q^{82} +4.05879e8 q^{83} +9.22133e6 q^{84} +2.34025e8 q^{85} +7.42452e7 q^{86} -2.45229e7 q^{87} -2.87483e8 q^{88} +2.03470e8 q^{89} +5.73992e7 q^{90} +3.06818e8 q^{91} -7.63674e8 q^{92} -5.12578e7 q^{93} -4.15802e7 q^{94} -2.19604e8 q^{95} -2.72173e7 q^{96} +9.77776e8 q^{97} +2.69821e7 q^{98} -1.20267e9 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 5q+2q2+140q3+832q43125q5144q6+12005q714136q8+67797q91250q10+10312q11+63388q12+158638q13+4802q1487500q15526696q16++698312668q99+O(q100) 5 q + 2 q^{2} + 140 q^{3} + 832 q^{4} - 3125 q^{5} - 144 q^{6} + 12005 q^{7} - 14136 q^{8} + 67797 q^{9} - 1250 q^{10} + 10312 q^{11} + 63388 q^{12} + 158638 q^{13} + 4802 q^{14} - 87500 q^{15} - 526696 q^{16}+ \cdots + 698312668 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 4.68049 0.206850 0.103425 0.994637i 0.467020π-0.467020\pi
0.103425 + 0.994637i 0.467020π0.467020\pi
33 −7.83652 −0.0558570 −0.0279285 0.999610i 0.508891π-0.508891\pi
−0.0279285 + 0.999610i 0.508891π0.508891\pi
44 −490.093 −0.957213
55 −625.000 −0.447214
66 −36.6787 −0.0115540
77 2401.00 0.377964
88 −4690.29 −0.404850
99 −19621.6 −0.996880
1010 −2925.31 −0.0925063
1111 61293.3 1.26225 0.631126 0.775680i 0.282593π-0.282593\pi
0.631126 + 0.775680i 0.282593π0.282593\pi
1212 3840.62 0.0534670
1313 127788. 1.24092 0.620460 0.784238i 0.286946π-0.286946\pi
0.620460 + 0.784238i 0.286946π0.286946\pi
1414 11237.9 0.0781821
1515 4897.82 0.0249800
1616 228975. 0.873470
1717 −374440. −1.08733 −0.543666 0.839302i 0.682964π-0.682964\pi
−0.543666 + 0.839302i 0.682964π0.682964\pi
1818 −91838.6 −0.206205
1919 351367. 0.618543 0.309272 0.950974i 0.399915π-0.399915\pi
0.309272 + 0.950974i 0.399915π0.399915\pi
2020 306308. 0.428079
2121 −18815.5 −0.0211120
2222 286883. 0.261097
2323 1.55822e6 1.16106 0.580529 0.814239i 0.302846π-0.302846\pi
0.580529 + 0.814239i 0.302846π0.302846\pi
2424 36755.5 0.0226137
2525 390625. 0.200000
2626 598109. 0.256685
2727 308011. 0.111540
2828 −1.17671e6 −0.361792
2929 3.12932e6 0.821597 0.410798 0.911726i 0.365250π-0.365250\pi
0.410798 + 0.911726i 0.365250π0.365250\pi
3030 22924.2 0.00516712
3131 6.54089e6 1.27206 0.636032 0.771662i 0.280574π-0.280574\pi
0.636032 + 0.771662i 0.280574π0.280574\pi
3232 3.47314e6 0.585528
3333 −480326. −0.0705056
3434 −1.75256e6 −0.224915
3535 −1.50062e6 −0.169031
3636 9.61640e6 0.954226
3737 −9.25714e6 −0.812025 −0.406012 0.913868i 0.633081π-0.633081\pi
−0.406012 + 0.913868i 0.633081π0.633081\pi
3838 1.64457e6 0.127946
3939 −1.00141e6 −0.0693140
4040 2.93143e6 0.181055
4141 −8.05013e6 −0.444913 −0.222457 0.974943i 0.571408π-0.571408\pi
−0.222457 + 0.974943i 0.571408π0.571408\pi
4242 −88065.6 −0.00436701
4343 1.58627e7 0.707570 0.353785 0.935327i 0.384895π-0.384895\pi
0.353785 + 0.935327i 0.384895π0.384895\pi
4444 −3.00394e7 −1.20824
4545 1.22635e7 0.445818
4646 7.29324e6 0.240165
4747 −8.88373e6 −0.265555 −0.132778 0.991146i 0.542390π-0.542390\pi
−0.132778 + 0.991146i 0.542390π0.542390\pi
4848 −1.79436e6 −0.0487894
4949 5.76480e6 0.142857
5050 1.82832e6 0.0413701
5151 2.93431e6 0.0607351
5252 −6.26278e7 −1.18782
5353 −5.68387e7 −0.989471 −0.494735 0.869044i 0.664735π-0.664735\pi
−0.494735 + 0.869044i 0.664735π0.664735\pi
5454 1.44164e6 0.0230720
5555 −3.83083e7 −0.564496
5656 −1.12614e7 −0.153019
5757 −2.75349e6 −0.0345499
5858 1.46467e7 0.169948
5959 8.14197e7 0.874773 0.437387 0.899274i 0.355904π-0.355904\pi
0.437387 + 0.899274i 0.355904π0.355904\pi
6060 −2.40039e6 −0.0239112
6161 −2.04282e8 −1.88906 −0.944531 0.328421i 0.893483π-0.893483\pi
−0.944531 + 0.328421i 0.893483π0.893483\pi
6262 3.06146e7 0.263127
6363 −4.71114e7 −0.376785
6464 −1.00979e8 −0.752353
6565 −7.98673e7 −0.554956
6666 −2.24816e6 −0.0145841
6767 8.88281e7 0.538535 0.269267 0.963065i 0.413218π-0.413218\pi
0.269267 + 0.963065i 0.413218π0.413218\pi
6868 1.83510e8 1.04081
6969 −1.22110e7 −0.0648532
7070 −7.02366e6 −0.0349641
7171 2.24233e8 1.04722 0.523609 0.851959i 0.324585π-0.324585\pi
0.523609 + 0.851959i 0.324585π0.324585\pi
7272 9.20309e7 0.403587
7373 1.91441e8 0.789010 0.394505 0.918894i 0.370916π-0.370916\pi
0.394505 + 0.918894i 0.370916π0.370916\pi
7474 −4.33280e7 −0.167968
7575 −3.06114e6 −0.0111714
7676 −1.72203e8 −0.592077
7777 1.47165e8 0.477086
7878 −4.68709e6 −0.0143376
7979 2.39411e7 0.0691549 0.0345774 0.999402i 0.488991π-0.488991\pi
0.0345774 + 0.999402i 0.488991π0.488991\pi
8080 −1.43109e8 −0.390627
8181 3.83798e8 0.990650
8282 −3.76785e7 −0.0920305
8383 4.05879e8 0.938741 0.469370 0.883001i 0.344481π-0.344481\pi
0.469370 + 0.883001i 0.344481π0.344481\pi
8484 9.22133e6 0.0202086
8585 2.34025e8 0.486270
8686 7.42452e7 0.146361
8787 −2.45229e7 −0.0458919
8888 −2.87483e8 −0.511023
8989 2.03470e8 0.343752 0.171876 0.985119i 0.445017π-0.445017\pi
0.171876 + 0.985119i 0.445017π0.445017\pi
9090 5.73992e7 0.0922177
9191 3.06818e8 0.469024
9292 −7.63674e8 −1.11138
9393 −5.12578e7 −0.0710537
9494 −4.15802e7 −0.0549302
9595 −2.19604e8 −0.276621
9696 −2.72173e7 −0.0327058
9797 9.77776e8 1.12142 0.560708 0.828014i 0.310529π-0.310529\pi
0.560708 + 0.828014i 0.310529π0.310529\pi
9898 2.69821e7 0.0295501
9999 −1.20267e9 −1.25831
100100 −1.91443e8 −0.191443
101101 1.21059e9 1.15758 0.578792 0.815475i 0.303524π-0.303524\pi
0.578792 + 0.815475i 0.303524π0.303524\pi
102102 1.37340e7 0.0125631
103103 1.67608e9 1.46733 0.733666 0.679511i 0.237808π-0.237808\pi
0.733666 + 0.679511i 0.237808π0.237808\pi
104104 −5.99361e8 −0.502387
105105 1.17597e7 0.00944155
106106 −2.66033e8 −0.204672
107107 −1.18347e9 −0.872831 −0.436416 0.899745i 0.643752π-0.643752\pi
−0.436416 + 0.899745i 0.643752π0.643752\pi
108108 −1.50954e8 −0.106767
109109 −2.42544e9 −1.64578 −0.822888 0.568203i 0.807639π-0.807639\pi
−0.822888 + 0.568203i 0.807639π0.807639\pi
110110 −1.79302e8 −0.116766
111111 7.25438e7 0.0453572
112112 5.49768e8 0.330140
113113 1.29095e9 0.744828 0.372414 0.928067i 0.378530π-0.378530\pi
0.372414 + 0.928067i 0.378530π0.378530\pi
114114 −1.28877e7 −0.00714667
115115 −9.73889e8 −0.519241
116116 −1.53366e9 −0.786443
117117 −2.50740e9 −1.23705
118118 3.81084e8 0.180947
119119 −8.99030e8 −0.410973
120120 −2.29722e7 −0.0101132
121121 1.39892e9 0.593280
122122 −9.56141e8 −0.390753
123123 6.30850e7 0.0248515
124124 −3.20564e9 −1.21764
125125 −2.44141e8 −0.0894427
126126 −2.20505e8 −0.0779382
127127 4.57285e9 1.55980 0.779902 0.625902i 0.215269π-0.215269\pi
0.779902 + 0.625902i 0.215269π0.215269\pi
128128 −2.25088e9 −0.741152
129129 −1.24308e8 −0.0395227
130130 −3.73818e8 −0.114793
131131 1.97356e9 0.585504 0.292752 0.956188i 0.405429π-0.405429\pi
0.292752 + 0.956188i 0.405429π0.405429\pi
132132 2.35404e8 0.0674888
133133 8.43632e8 0.233787
134134 4.15759e8 0.111396
135135 −1.92507e8 −0.0498821
136136 1.75623e9 0.440207
137137 2.91623e9 0.707260 0.353630 0.935385i 0.384947π-0.384947\pi
0.353630 + 0.935385i 0.384947π0.384947\pi
138138 −5.71536e7 −0.0134149
139139 1.68574e8 0.0383023 0.0191512 0.999817i 0.493904π-0.493904\pi
0.0191512 + 0.999817i 0.493904π0.493904\pi
140140 7.35446e8 0.161799
141141 6.96175e7 0.0148331
142142 1.04952e9 0.216617
143143 7.83253e9 1.56635
144144 −4.49285e9 −0.870744
145145 −1.95582e9 −0.367429
146146 8.96039e8 0.163207
147147 −4.51760e7 −0.00797957
148148 4.53686e9 0.777281
149149 −1.03146e10 −1.71440 −0.857202 0.514980i 0.827799π-0.827799\pi
−0.857202 + 0.514980i 0.827799π0.827799\pi
150150 −1.43276e7 −0.00231081
151151 −6.51350e9 −1.01957 −0.509786 0.860301i 0.670276π-0.670276\pi
−0.509786 + 0.860301i 0.670276π0.670276\pi
152152 −1.64801e9 −0.250417
153153 7.34711e9 1.08394
154154 6.88805e8 0.0986855
155155 −4.08806e9 −0.568885
156156 4.90784e8 0.0663483
157157 1.06861e10 1.40369 0.701843 0.712332i 0.252361π-0.252361\pi
0.701843 + 0.712332i 0.252361π0.252361\pi
158158 1.12056e8 0.0143047
159159 4.45418e8 0.0552688
160160 −2.17071e9 −0.261856
161161 3.74129e9 0.438839
162162 1.79636e9 0.204916
163163 1.42299e10 1.57891 0.789457 0.613806i 0.210362π-0.210362\pi
0.789457 + 0.613806i 0.210362π0.210362\pi
164164 3.94531e9 0.425877
165165 3.00204e8 0.0315311
166166 1.89971e9 0.194179
167167 2.78646e9 0.277223 0.138611 0.990347i 0.455736π-0.455736\pi
0.138611 + 0.990347i 0.455736π0.455736\pi
168168 8.82500e7 0.00854718
169169 5.72518e9 0.539882
170170 1.09535e9 0.100585
171171 −6.89438e9 −0.616613
172172 −7.77420e9 −0.677295
173173 −1.71904e10 −1.45908 −0.729540 0.683938i 0.760266π-0.760266\pi
−0.729540 + 0.683938i 0.760266π0.760266\pi
174174 −1.14779e8 −0.00949276
175175 9.37891e8 0.0755929
176176 1.40346e10 1.10254
177177 −6.38047e8 −0.0488622
178178 9.52340e8 0.0711053
179179 −2.31226e10 −1.68344 −0.841719 0.539915i 0.818456π-0.818456\pi
−0.841719 + 0.539915i 0.818456π0.818456\pi
180180 −6.01025e9 −0.426743
181181 2.28943e10 1.58553 0.792763 0.609531i 0.208642π-0.208642\pi
0.792763 + 0.609531i 0.208642π0.208642\pi
182182 1.43606e9 0.0970177
183183 1.60086e9 0.105517
184184 −7.30851e9 −0.470055
185185 5.78572e9 0.363149
186186 −2.39912e8 −0.0146975
187187 −2.29507e10 −1.37249
188188 4.35386e9 0.254193
189189 7.39535e8 0.0421580
190190 −1.02786e9 −0.0572191
191191 −1.66664e10 −0.906131 −0.453065 0.891477i 0.649670π-0.649670\pi
−0.453065 + 0.891477i 0.649670π0.649670\pi
192192 7.91324e8 0.0420242
193193 −2.30952e10 −1.19816 −0.599079 0.800690i 0.704466π-0.704466\pi
−0.599079 + 0.800690i 0.704466π0.704466\pi
194194 4.57647e9 0.231965
195195 6.25881e8 0.0309982
196196 −2.82529e9 −0.136745
197197 −2.42166e10 −1.14555 −0.572776 0.819712i 0.694134π-0.694134\pi
−0.572776 + 0.819712i 0.694134π0.694134\pi
198198 −5.62910e9 −0.260283
199199 −2.18408e10 −0.987257 −0.493628 0.869673i 0.664330π-0.664330\pi
−0.493628 + 0.869673i 0.664330π0.664330\pi
200200 −1.83214e9 −0.0809700
201201 −6.96103e8 −0.0300809
202202 5.66617e9 0.239447
203203 7.51349e9 0.310534
204204 −1.43808e9 −0.0581364
205205 5.03133e9 0.198971
206206 7.84489e9 0.303518
207207 −3.05748e10 −1.15744
208208 2.92601e10 1.08391
209209 2.15365e10 0.780757
210210 5.50410e7 0.00195299
211211 7.72507e9 0.268307 0.134153 0.990961i 0.457169π-0.457169\pi
0.134153 + 0.990961i 0.457169π0.457169\pi
212212 2.78563e10 0.947134
213213 −1.75720e9 −0.0584944
214214 −5.53922e9 −0.180545
215215 −9.91419e9 −0.316435
216216 −1.44466e9 −0.0451569
217217 1.57047e10 0.480795
218218 −1.13522e10 −0.340429
219219 −1.50023e9 −0.0440717
220220 1.87746e10 0.540343
221221 −4.78488e10 −1.34929
222222 3.39540e8 0.00938216
223223 2.17022e10 0.587668 0.293834 0.955856i 0.405069π-0.405069\pi
0.293834 + 0.955856i 0.405069π0.405069\pi
224224 8.33901e9 0.221309
225225 −7.66468e9 −0.199376
226226 6.04227e9 0.154068
227227 4.79669e10 1.19902 0.599508 0.800369i 0.295363π-0.295363\pi
0.599508 + 0.800369i 0.295363π0.295363\pi
228228 1.34947e9 0.0330716
229229 4.12350e10 0.990846 0.495423 0.868652i 0.335013π-0.335013\pi
0.495423 + 0.868652i 0.335013π0.335013\pi
230230 −4.55828e9 −0.107405
231231 −1.15326e9 −0.0266486
232232 −1.46774e10 −0.332624
233233 −7.25284e10 −1.61215 −0.806077 0.591811i 0.798413π-0.798413\pi
−0.806077 + 0.591811i 0.798413π0.798413\pi
234234 −1.17358e10 −0.255884
235235 5.55233e9 0.118760
236236 −3.99032e10 −0.837344
237237 −1.87615e8 −0.00386278
238238 −4.20790e9 −0.0850099
239239 8.27096e10 1.63970 0.819852 0.572576i 0.194056π-0.194056\pi
0.819852 + 0.572576i 0.194056π0.194056\pi
240240 1.12148e9 0.0218193
241241 5.66304e10 1.08137 0.540683 0.841226i 0.318166π-0.318166\pi
0.540683 + 0.841226i 0.318166π0.318166\pi
242242 6.54765e9 0.122720
243243 −9.07022e9 −0.166874
244244 1.00117e11 1.80824
245245 −3.60300e9 −0.0638877
246246 2.95269e8 0.00514054
247247 4.49004e10 0.767562
248248 −3.06786e10 −0.514996
249249 −3.18068e9 −0.0524352
250250 −1.14270e9 −0.0185013
251251 −4.37000e10 −0.694944 −0.347472 0.937690i 0.612960π-0.612960\pi
−0.347472 + 0.937690i 0.612960π0.612960\pi
252252 2.30890e10 0.360664
253253 9.55086e10 1.46555
254254 2.14032e10 0.322646
255255 −1.83394e9 −0.0271615
256256 4.11661e10 0.599045
257257 −1.04178e11 −1.48963 −0.744815 0.667271i 0.767462π-0.767462\pi
−0.744815 + 0.667271i 0.767462π0.767462\pi
258258 −5.81824e8 −0.00817529
259259 −2.22264e10 −0.306917
260260 3.91424e10 0.531211
261261 −6.14022e10 −0.819033
262262 9.23723e9 0.121112
263263 −1.04346e11 −1.34485 −0.672424 0.740166i 0.734747π-0.734747\pi
−0.672424 + 0.740166i 0.734747π0.734747\pi
264264 2.25287e9 0.0285442
265265 3.55242e10 0.442505
266266 3.94861e9 0.0483590
267267 −1.59450e9 −0.0192010
268268 −4.35340e10 −0.515493
269269 9.25092e10 1.07721 0.538604 0.842559i 0.318952π-0.318952\pi
0.538604 + 0.842559i 0.318952π0.318952\pi
270270 −9.01027e8 −0.0103181
271271 −5.41823e10 −0.610233 −0.305117 0.952315i 0.598695π-0.598695\pi
−0.305117 + 0.952315i 0.598695π0.598695\pi
272272 −8.57373e10 −0.949751
273273 −2.40439e9 −0.0261982
274274 1.36494e10 0.146297
275275 2.39427e10 0.252450
276276 5.98454e9 0.0620783
277277 1.18973e11 1.21420 0.607099 0.794627i 0.292333π-0.292333\pi
0.607099 + 0.794627i 0.292333π0.292333\pi
278278 7.89011e8 0.00792285
279279 −1.28343e11 −1.26810
280280 7.03836e9 0.0684322
281281 −7.86550e10 −0.752572 −0.376286 0.926504i 0.622799π-0.622799\pi
−0.376286 + 0.926504i 0.622799π0.622799\pi
282282 3.25844e8 0.00306824
283283 −8.35155e10 −0.773977 −0.386989 0.922085i 0.626485π-0.626485\pi
−0.386989 + 0.922085i 0.626485π0.626485\pi
284284 −1.09895e11 −1.00241
285285 1.72093e9 0.0154512
286286 3.66601e10 0.324001
287287 −1.93284e10 −0.168161
288288 −6.81485e10 −0.583701
289289 2.16174e10 0.182290
290290 −9.15421e9 −0.0760029
291291 −7.66236e9 −0.0626389
292292 −9.38240e10 −0.755251
293293 −6.91745e10 −0.548330 −0.274165 0.961683i 0.588401π-0.588401\pi
−0.274165 + 0.961683i 0.588401π0.588401\pi
294294 −2.11446e8 −0.00165058
295295 −5.08873e10 −0.391210
296296 4.34187e10 0.328748
297297 1.88790e10 0.140791
298298 −4.82773e10 −0.354625
299299 1.99122e11 1.44078
300300 1.50024e9 0.0106934
301301 3.80864e10 0.267436
302302 −3.04864e10 −0.210899
303303 −9.48684e9 −0.0646591
304304 8.04542e10 0.540278
305305 1.27676e11 0.844814
306306 3.43881e10 0.224213
307307 1.72821e10 0.111039 0.0555194 0.998458i 0.482319π-0.482319\pi
0.0555194 + 0.998458i 0.482319π0.482319\pi
308308 −7.21247e10 −0.456673
309309 −1.31347e10 −0.0819607
310310 −1.91341e10 −0.117674
311311 −2.24570e11 −1.36123 −0.680614 0.732642i 0.738287π-0.738287\pi
−0.680614 + 0.732642i 0.738287π0.738287\pi
312312 4.69690e9 0.0280618
313313 6.15640e10 0.362558 0.181279 0.983432i 0.441976π-0.441976\pi
0.181279 + 0.983432i 0.441976π0.441976\pi
314314 5.00161e10 0.290353
315315 2.94446e10 0.168503
316316 −1.17334e10 −0.0661959
317317 −1.03866e11 −0.577705 −0.288853 0.957374i 0.593274π-0.593274\pi
−0.288853 + 0.957374i 0.593274π0.593274\pi
318318 2.08477e9 0.0114324
319319 1.91806e11 1.03706
320320 6.31119e10 0.336462
321321 9.27428e9 0.0487537
322322 1.75111e10 0.0907740
323323 −1.31566e11 −0.672561
324324 −1.88097e11 −0.948263
325325 4.99170e10 0.248184
326326 6.66030e10 0.326599
327327 1.90070e10 0.0919281
328328 3.77574e10 0.180123
329329 −2.13298e10 −0.100371
330330 1.40510e9 0.00652221
331331 1.19600e11 0.547651 0.273826 0.961779i 0.411711π-0.411711\pi
0.273826 + 0.961779i 0.411711π0.411711\pi
332332 −1.98919e11 −0.898575
333333 1.81640e11 0.809491
334334 1.30420e10 0.0573436
335335 −5.55176e10 −0.240840
336336 −4.30827e9 −0.0184406
337337 1.78854e11 0.755379 0.377690 0.925932i 0.376719π-0.376719\pi
0.377690 + 0.925932i 0.376719π0.376719\pi
338338 2.67967e10 0.111675
339339 −1.01165e10 −0.0416038
340340 −1.14694e11 −0.465464
341341 4.00913e11 1.60567
342342 −3.22691e10 −0.127547
343343 1.38413e10 0.0539949
344344 −7.44006e10 −0.286460
345345 7.63189e9 0.0290032
346346 −8.04596e10 −0.301811
347347 2.90904e11 1.07713 0.538563 0.842585i 0.318967π-0.318967\pi
0.538563 + 0.842585i 0.318967π0.318967\pi
348348 1.20185e10 0.0439283
349349 −1.20156e11 −0.433543 −0.216772 0.976222i 0.569553π-0.569553\pi
−0.216772 + 0.976222i 0.569553π0.569553\pi
350350 4.38979e9 0.0156364
351351 3.93600e10 0.138412
352352 2.12880e11 0.739084
353353 2.68637e11 0.920831 0.460415 0.887704i 0.347700π-0.347700\pi
0.460415 + 0.887704i 0.347700π0.347700\pi
354354 −2.98637e9 −0.0101072
355355 −1.40146e11 −0.468330
356356 −9.97193e10 −0.329044
357357 7.04527e9 0.0229557
358358 −1.08225e11 −0.348220
359359 4.23529e11 1.34573 0.672865 0.739765i 0.265063π-0.265063\pi
0.672865 + 0.739765i 0.265063π0.265063\pi
360360 −5.75193e10 −0.180490
361361 −1.99229e11 −0.617405
362362 1.07156e11 0.327966
363363 −1.09627e10 −0.0331388
364364 −1.50369e11 −0.448956
365365 −1.19651e11 −0.352856
366366 7.49281e9 0.0218263
367367 −3.14338e11 −0.904480 −0.452240 0.891896i 0.649375π-0.649375\pi
−0.452240 + 0.891896i 0.649375π0.649375\pi
368368 3.56794e11 1.01415
369369 1.57956e11 0.443525
370370 2.70800e10 0.0751174
371371 −1.36470e11 −0.373985
372372 2.51211e10 0.0680135
373373 4.22978e11 1.13143 0.565715 0.824601i 0.308600π-0.308600\pi
0.565715 + 0.824601i 0.308600π0.308600\pi
374374 −1.07420e11 −0.283899
375375 1.91321e9 0.00499600
376376 4.16673e10 0.107510
377377 3.99888e11 1.01954
378378 3.46138e9 0.00872040
379379 −4.54590e11 −1.13173 −0.565866 0.824497i 0.691458π-0.691458\pi
−0.565866 + 0.824497i 0.691458π0.691458\pi
380380 1.07627e11 0.264785
381381 −3.58352e10 −0.0871259
382382 −7.80068e10 −0.187433
383383 −2.56165e11 −0.608311 −0.304155 0.952622i 0.598374π-0.598374\pi
−0.304155 + 0.952622i 0.598374π0.598374\pi
384384 1.76391e10 0.0413985
385385 −9.19783e10 −0.213360
386386 −1.08097e11 −0.247839
387387 −3.11252e11 −0.705362
388388 −4.79201e11 −1.07343
389389 4.07620e9 0.00902572 0.00451286 0.999990i 0.498564π-0.498564\pi
0.00451286 + 0.999990i 0.498564π0.498564\pi
390390 2.92943e9 0.00641198
391391 −5.83461e11 −1.26246
392392 −2.70386e10 −0.0578357
393393 −1.54658e10 −0.0327045
394394 −1.13346e11 −0.236958
395395 −1.49632e10 −0.0309270
396396 5.89421e11 1.20447
397397 5.25740e11 1.06222 0.531109 0.847303i 0.321775π-0.321775\pi
0.531109 + 0.847303i 0.321775π0.321775\pi
398398 −1.02226e11 −0.204214
399399 −6.61114e9 −0.0130586
400400 8.94433e10 0.174694
401401 −4.96583e11 −0.959051 −0.479526 0.877528i 0.659191π-0.659191\pi
−0.479526 + 0.877528i 0.659191π0.659191\pi
402402 −3.25810e9 −0.00622225
403403 8.35845e11 1.57853
404404 −5.93304e11 −1.10805
405405 −2.39874e11 −0.443032
406406 3.51668e10 0.0642341
407407 −5.67401e11 −1.02498
408408 −1.37627e10 −0.0245886
409409 −6.22845e11 −1.10059 −0.550294 0.834971i 0.685484π-0.685484\pi
−0.550294 + 0.834971i 0.685484π0.685484\pi
410410 2.35491e10 0.0411573
411411 −2.28531e10 −0.0395054
412412 −8.21437e11 −1.40455
413413 1.95489e11 0.330633
414414 −1.43105e11 −0.239416
415415 −2.53675e11 −0.419818
416416 4.43824e11 0.726593
417417 −1.32104e9 −0.00213945
418418 1.00801e11 0.161500
419419 −9.02432e11 −1.43038 −0.715190 0.698930i 0.753660π-0.753660\pi
−0.715190 + 0.698930i 0.753660π0.753660\pi
420420 −5.76333e9 −0.00903757
421421 1.13768e12 1.76502 0.882509 0.470296i 0.155853π-0.155853\pi
0.882509 + 0.470296i 0.155853π0.155853\pi
422422 3.61571e10 0.0554993
423423 1.74313e11 0.264727
424424 2.66590e11 0.400587
425425 −1.46266e11 −0.217466
426426 −8.22458e9 −0.0120996
427427 −4.90482e11 −0.713999
428428 5.80010e11 0.835485
429429 −6.13797e10 −0.0874918
430430 −4.64033e10 −0.0654547
431431 4.68899e11 0.654533 0.327266 0.944932i 0.393873π-0.393873\pi
0.327266 + 0.944932i 0.393873π0.393873\pi
432432 7.05268e10 0.0974265
433433 3.39136e11 0.463638 0.231819 0.972759i 0.425532π-0.425532\pi
0.231819 + 0.972759i 0.425532π0.425532\pi
434434 7.35056e10 0.0994527
435435 1.53268e10 0.0205235
436436 1.18869e12 1.57536
437437 5.47508e11 0.718165
438438 −7.02182e9 −0.00911625
439439 −8.34074e11 −1.07180 −0.535901 0.844281i 0.680028π-0.680028\pi
−0.535901 + 0.844281i 0.680028π0.680028\pi
440440 1.79677e11 0.228536
441441 −1.13115e11 −0.142411
442442 −2.23956e11 −0.279101
443443 −8.87244e11 −1.09453 −0.547263 0.836961i 0.684330π-0.684330\pi
−0.547263 + 0.836961i 0.684330π0.684330\pi
444444 −3.55532e10 −0.0434165
445445 −1.27169e11 −0.153731
446446 1.01577e11 0.121559
447447 8.08304e10 0.0957615
448448 −2.42451e11 −0.284363
449449 −2.68409e9 −0.00311665 −0.00155832 0.999999i 0.500496π-0.500496\pi
−0.00155832 + 0.999999i 0.500496π0.500496\pi
450450 −3.58745e10 −0.0412410
451451 −4.93419e11 −0.561593
452452 −6.32685e11 −0.712959
453453 5.10431e10 0.0569502
454454 2.24509e11 0.248017
455455 −1.91761e11 −0.209754
456456 1.29147e10 0.0139875
457457 9.37032e11 1.00492 0.502460 0.864600i 0.332428π-0.332428\pi
0.502460 + 0.864600i 0.332428π0.332428\pi
458458 1.93000e11 0.204957
459459 −1.15332e11 −0.121281
460460 4.77296e11 0.497024
461461 −2.76095e11 −0.284711 −0.142356 0.989816i 0.545468π-0.545468\pi
−0.142356 + 0.989816i 0.545468π0.545468\pi
462462 −5.39784e9 −0.00551227
463463 −1.47542e11 −0.149211 −0.0746055 0.997213i 0.523770π-0.523770\pi
−0.0746055 + 0.997213i 0.523770π0.523770\pi
464464 7.16535e11 0.717640
465465 3.20361e10 0.0317762
466466 −3.39468e11 −0.333475
467467 1.62968e12 1.58554 0.792770 0.609521i 0.208638π-0.208638\pi
0.792770 + 0.609521i 0.208638π0.208638\pi
468468 1.22886e12 1.18412
469469 2.13276e11 0.203547
470470 2.59876e10 0.0245656
471471 −8.37416e10 −0.0784056
472472 −3.81882e11 −0.354152
473473 9.72278e11 0.893131
474474 −8.78130e8 −0.000799018 0
475475 1.37253e11 0.123709
476476 4.40609e11 0.393388
477477 1.11527e12 0.986383
478478 3.87121e11 0.339173
479479 1.04475e12 0.906779 0.453389 0.891313i 0.350215π-0.350215\pi
0.453389 + 0.891313i 0.350215π0.350215\pi
480480 1.70108e10 0.0146265
481481 −1.18295e12 −1.00766
482482 2.65058e11 0.223681
483483 −2.93187e10 −0.0245122
484484 −6.85603e11 −0.567895
485485 −6.11110e11 −0.501512
486486 −4.24531e10 −0.0345180
487487 −6.55197e11 −0.527827 −0.263913 0.964546i 0.585013π-0.585013\pi
−0.263913 + 0.964546i 0.585013π0.585013\pi
488488 9.58142e11 0.764787
489489 −1.11513e11 −0.0881933
490490 −1.68638e10 −0.0132152
491491 −1.69481e12 −1.31600 −0.657998 0.753019i 0.728597π-0.728597\pi
−0.657998 + 0.753019i 0.728597π0.728597\pi
492492 −3.09175e10 −0.0237882
493493 −1.17174e12 −0.893348
494494 2.10156e11 0.158771
495495 7.51670e11 0.562735
496496 1.49770e12 1.11111
497497 5.38383e11 0.395811
498498 −1.48871e10 −0.0108462
499499 −9.93558e11 −0.717366 −0.358683 0.933459i 0.616774π-0.616774\pi
−0.358683 + 0.933459i 0.616774π0.616774\pi
500500 1.19652e11 0.0856157
501501 −2.18362e10 −0.0154848
502502 −2.04537e11 −0.143749
503503 2.36079e11 0.164438 0.0822188 0.996614i 0.473799π-0.473799\pi
0.0822188 + 0.996614i 0.473799π0.473799\pi
504504 2.20966e11 0.152542
505505 −7.56621e11 −0.517687
506506 4.47027e11 0.303149
507507 −4.48655e10 −0.0301562
508508 −2.24112e12 −1.49306
509509 6.12223e11 0.404277 0.202139 0.979357i 0.435211π-0.435211\pi
0.202139 + 0.979357i 0.435211π0.435211\pi
510510 −8.58374e9 −0.00561838
511511 4.59651e11 0.298218
512512 1.34513e12 0.865065
513513 1.08225e11 0.0689921
514514 −4.87605e11 −0.308130
515515 −1.04755e12 −0.656211
516516 6.09227e10 0.0378316
517517 −5.44514e11 −0.335198
518518 −1.04030e11 −0.0634858
519519 1.34713e11 0.0814998
520520 3.74600e11 0.224674
521521 −3.50205e11 −0.208235 −0.104117 0.994565i 0.533202π-0.533202\pi
−0.104117 + 0.994565i 0.533202π0.533202\pi
522522 −2.87392e11 −0.169417
523523 −2.61442e12 −1.52798 −0.763989 0.645229i 0.776762π-0.776762\pi
−0.763989 + 0.645229i 0.776762π0.776762\pi
524524 −9.67229e11 −0.560452
525525 −7.34979e9 −0.00422239
526526 −4.88388e11 −0.278182
527527 −2.44917e12 −1.38316
528528 −1.09983e11 −0.0615845
529529 6.26903e11 0.348057
530530 1.66271e11 0.0915323
531531 −1.59758e12 −0.872044
532532 −4.13458e11 −0.223784
533533 −1.02871e12 −0.552102
534534 −7.46303e9 −0.00397173
535535 7.39669e11 0.390342
536536 −4.16629e11 −0.218026
537537 1.81200e11 0.0940318
538538 4.32988e11 0.222821
539539 3.53344e11 0.180322
540540 9.43463e10 0.0477477
541541 −1.47804e12 −0.741821 −0.370911 0.928669i 0.620954π-0.620954\pi
−0.370911 + 0.928669i 0.620954π0.620954\pi
542542 −2.53600e11 −0.126227
543543 −1.79411e11 −0.0885626
544544 −1.30048e12 −0.636663
545545 1.51590e12 0.736014
546546 −1.12537e10 −0.00541912
547547 7.35485e11 0.351262 0.175631 0.984456i 0.443804π-0.443804\pi
0.175631 + 0.984456i 0.443804π0.443804\pi
548548 −1.42922e12 −0.676999
549549 4.00834e12 1.88317
550550 1.12064e11 0.0522195
551551 1.09954e12 0.508193
552552 5.72732e10 0.0262558
553553 5.74827e10 0.0261381
554554 5.56852e11 0.251157
555555 −4.53399e10 −0.0202844
556556 −8.26172e10 −0.0366635
557557 −9.41535e11 −0.414465 −0.207233 0.978292i 0.566446π-0.566446\pi
−0.207233 + 0.978292i 0.566446π0.566446\pi
558558 −6.00706e11 −0.262306
559559 2.02706e12 0.878037
560560 −3.43605e11 −0.147643
561561 1.79853e11 0.0766630
562562 −3.68144e11 −0.155670
563563 3.00632e12 1.26110 0.630548 0.776151i 0.282830π-0.282830\pi
0.630548 + 0.776151i 0.282830π0.282830\pi
564564 −3.41191e10 −0.0141985
565565 −8.06843e11 −0.333097
566566 −3.90893e11 −0.160097
567567 9.21499e11 0.374430
568568 −1.05172e12 −0.423966
569569 3.42996e12 1.37178 0.685889 0.727706i 0.259413π-0.259413\pi
0.685889 + 0.727706i 0.259413π0.259413\pi
570570 8.05481e9 0.00319609
571571 −3.90075e12 −1.53563 −0.767814 0.640673i 0.778656π-0.778656\pi
−0.767814 + 0.640673i 0.778656π0.778656\pi
572572 −3.83867e12 −1.49933
573573 1.30606e11 0.0506137
574574 −9.04662e10 −0.0347843
575575 6.08680e11 0.232212
576576 1.98137e12 0.750006
577577 6.26050e11 0.235135 0.117568 0.993065i 0.462490π-0.462490\pi
0.117568 + 0.993065i 0.462490π0.462490\pi
578578 1.01180e11 0.0377069
579579 1.80986e11 0.0669254
580580 9.58535e11 0.351708
581581 9.74517e11 0.354811
582582 −3.58636e10 −0.0129569
583583 −3.48383e12 −1.24896
584584 −8.97914e11 −0.319431
585585 1.56712e12 0.553225
586586 −3.23771e11 −0.113422
587587 1.68145e12 0.584538 0.292269 0.956336i 0.405590π-0.405590\pi
0.292269 + 0.956336i 0.405590π0.405590\pi
588588 2.21404e10 0.00763814
589589 2.29825e12 0.786827
590590 −2.38177e11 −0.0809220
591591 1.89774e11 0.0639871
592592 −2.11965e12 −0.709279
593593 −1.58522e12 −0.526434 −0.263217 0.964737i 0.584783π-0.584783\pi
−0.263217 + 0.964737i 0.584783π0.584783\pi
594594 8.83631e10 0.0291227
595595 5.61894e11 0.183793
596596 5.05510e12 1.64105
597597 1.71156e11 0.0551452
598598 9.31986e11 0.298026
599599 −4.78087e12 −1.51735 −0.758675 0.651469i 0.774153π-0.774153\pi
−0.758675 + 0.651469i 0.774153π0.774153\pi
600600 1.43576e10 0.00452274
601601 2.13180e10 0.00666516 0.00333258 0.999994i 0.498939π-0.498939\pi
0.00333258 + 0.999994i 0.498939π0.498939\pi
602602 1.78263e11 0.0553193
603603 −1.74295e12 −0.536855
604604 3.19222e12 0.975948
605605 −8.74327e11 −0.265323
606606 −4.44030e10 −0.0133748
607607 3.71643e12 1.11116 0.555580 0.831463i 0.312496π-0.312496\pi
0.555580 + 0.831463i 0.312496π0.312496\pi
608608 1.22035e12 0.362174
609609 −5.88796e10 −0.0173455
610610 5.97588e11 0.174750
611611 −1.13523e12 −0.329533
612612 −3.60077e12 −1.03756
613613 2.28399e12 0.653315 0.326657 0.945143i 0.394078π-0.394078\pi
0.326657 + 0.945143i 0.394078π0.394078\pi
614614 8.08889e10 0.0229684
615615 −3.94281e10 −0.0111139
616616 −6.90247e11 −0.193149
617617 4.11730e12 1.14374 0.571872 0.820343i 0.306217π-0.306217\pi
0.571872 + 0.820343i 0.306217π0.306217\pi
618618 −6.14766e10 −0.0169536
619619 5.99191e12 1.64043 0.820214 0.572057i 0.193854π-0.193854\pi
0.820214 + 0.572057i 0.193854π0.193854\pi
620620 2.00353e12 0.544544
621621 4.79950e11 0.129504
622622 −1.05110e12 −0.281571
623623 4.88532e11 0.129926
624624 −2.29298e11 −0.0605437
625625 1.52588e11 0.0400000
626626 2.88150e11 0.0749952
627627 −1.68771e11 −0.0436107
628628 −5.23717e12 −1.34363
629629 3.46625e12 0.882940
630630 1.37815e11 0.0348550
631631 4.14396e12 1.04060 0.520300 0.853984i 0.325820π-0.325820\pi
0.520300 + 0.853984i 0.325820π0.325820\pi
632632 −1.12291e11 −0.0279974
633633 −6.05377e10 −0.0149868
634634 −4.86143e11 −0.119498
635635 −2.85803e12 −0.697565
636636 −2.18296e11 −0.0529040
637637 7.36670e11 0.177274
638638 8.97747e11 0.214517
639639 −4.39981e12 −1.04395
640640 1.40680e12 0.331453
641641 −3.87177e12 −0.905833 −0.452917 0.891553i 0.649617π-0.649617\pi
−0.452917 + 0.891553i 0.649617π0.649617\pi
642642 4.34082e10 0.0100847
643643 6.81081e12 1.57127 0.785633 0.618693i 0.212338π-0.212338\pi
0.785633 + 0.618693i 0.212338π0.212338\pi
644644 −1.83358e12 −0.420062
645645 7.76927e10 0.0176751
646646 −6.15793e11 −0.139120
647647 2.40797e12 0.540233 0.270117 0.962828i 0.412938π-0.412938\pi
0.270117 + 0.962828i 0.412938π0.412938\pi
648648 −1.80012e12 −0.401065
649649 4.99048e12 1.10418
650650 2.33636e11 0.0513370
651651 −1.23070e11 −0.0268558
652652 −6.97399e12 −1.51136
653653 −4.90892e12 −1.05652 −0.528259 0.849083i 0.677155π-0.677155\pi
−0.528259 + 0.849083i 0.677155π0.677155\pi
654654 8.89620e10 0.0190154
655655 −1.23348e12 −0.261845
656656 −1.84328e12 −0.388618
657657 −3.75638e12 −0.786549
658658 −9.98341e10 −0.0207617
659659 −3.36518e11 −0.0695062 −0.0347531 0.999396i 0.511064π-0.511064\pi
−0.0347531 + 0.999396i 0.511064π0.511064\pi
660660 −1.47128e11 −0.0301819
661661 −5.58058e11 −0.113703 −0.0568516 0.998383i 0.518106π-0.518106\pi
−0.0568516 + 0.998383i 0.518106π0.518106\pi
662662 5.59785e11 0.113282
663663 3.74968e11 0.0753674
664664 −1.90369e12 −0.380049
665665 −5.27270e11 −0.104553
666666 8.50164e11 0.167444
667667 4.87617e12 0.953922
668668 −1.36563e12 −0.265361
669669 −1.70070e11 −0.0328254
670670 −2.59849e11 −0.0498179
671671 −1.25211e13 −2.38447
672672 −6.53488e10 −0.0123616
673673 −3.26341e12 −0.613202 −0.306601 0.951838i 0.599192π-0.599192\pi
−0.306601 + 0.951838i 0.599192π0.599192\pi
674674 8.37126e11 0.156250
675675 1.20317e11 0.0223079
676676 −2.80587e12 −0.516782
677677 −2.71325e12 −0.496410 −0.248205 0.968708i 0.579841π-0.579841\pi
−0.248205 + 0.968708i 0.579841π0.579841\pi
678678 −4.73503e10 −0.00860577
679679 2.34764e12 0.423855
680680 −1.09764e12 −0.196866
681681 −3.75893e11 −0.0669734
682682 1.87647e12 0.332133
683683 2.42887e12 0.427082 0.213541 0.976934i 0.431500π-0.431500\pi
0.213541 + 0.976934i 0.431500π0.431500\pi
684684 3.37889e12 0.590230
685685 −1.82264e12 −0.316296
686686 6.47840e10 0.0111689
687687 −3.23139e11 −0.0553457
688688 3.63216e12 0.618041
689689 −7.26329e12 −1.22785
690690 3.57210e10 0.00599933
691691 5.97125e12 0.996355 0.498178 0.867075i 0.334003π-0.334003\pi
0.498178 + 0.867075i 0.334003π0.334003\pi
692692 8.42491e12 1.39665
693693 −2.88762e12 −0.475598
694694 1.36157e12 0.222804
695695 −1.05359e11 −0.0171293
696696 1.15020e11 0.0185793
697697 3.01429e12 0.483768
698698 −5.62391e11 −0.0896786
699699 5.68370e11 0.0900500
700700 −4.59654e11 −0.0723585
701701 −4.18398e12 −0.654423 −0.327212 0.944951i 0.606109π-0.606109\pi
−0.327212 + 0.944951i 0.606109π0.606109\pi
702702 1.84224e11 0.0286305
703703 −3.25266e12 −0.502272
704704 −6.18934e12 −0.949659
705705 −4.35110e10 −0.00663357
706706 1.25735e12 0.190474
707707 2.90664e12 0.437525
708708 3.12702e11 0.0467715
709709 −8.83893e12 −1.31369 −0.656843 0.754027i 0.728109π-0.728109\pi
−0.656843 + 0.754027i 0.728109π0.728109\pi
710710 −6.55950e11 −0.0968742
711711 −4.69763e11 −0.0689391
712712 −9.54333e11 −0.139168
713713 1.01922e13 1.47694
714714 3.29753e10 0.00474839
715715 −4.89533e12 −0.700495
716716 1.13322e13 1.61141
717717 −6.48155e11 −0.0915889
718718 1.98232e12 0.278365
719719 −2.92264e12 −0.407845 −0.203922 0.978987i 0.565369π-0.565369\pi
−0.203922 + 0.978987i 0.565369π0.565369\pi
720720 2.80803e12 0.389409
721721 4.02428e12 0.554599
722722 −9.32489e11 −0.127710
723723 −4.43785e11 −0.0604019
724724 −1.12203e13 −1.51769
725725 1.22239e12 0.164319
726726 −5.13107e10 −0.00685478
727727 −1.21723e13 −1.61610 −0.808048 0.589117i 0.799476π-0.799476\pi
−0.808048 + 0.589117i 0.799476π0.799476\pi
728728 −1.43906e12 −0.189884
729729 −7.48322e12 −0.981329
730730 −5.60024e11 −0.0729884
731731 −5.93963e12 −0.769363
732732 −7.84571e11 −0.101003
733733 1.08103e13 1.38315 0.691574 0.722305i 0.256918π-0.256918\pi
0.691574 + 0.722305i 0.256918π0.256918\pi
734734 −1.47125e12 −0.187092
735735 2.82350e10 0.00356857
736736 5.41192e12 0.679832
737737 5.44457e12 0.679767
738738 7.39313e11 0.0917434
739739 9.83935e12 1.21357 0.606787 0.794864i 0.292458π-0.292458\pi
0.606787 + 0.794864i 0.292458π0.292458\pi
740740 −2.83554e12 −0.347610
741741 −3.51863e11 −0.0428737
742742 −6.38745e11 −0.0773589
743743 −1.84462e12 −0.222053 −0.111027 0.993817i 0.535414π-0.535414\pi
−0.111027 + 0.993817i 0.535414π0.535414\pi
744744 2.40414e11 0.0287661
745745 6.44661e12 0.766705
746746 1.97974e12 0.234037
747747 −7.96400e12 −0.935812
748748 1.12480e13 1.31376
749749 −2.84151e12 −0.329899
750750 8.95477e9 0.00103342
751751 1.55156e13 1.77987 0.889936 0.456085i 0.150749π-0.150749\pi
0.889936 + 0.456085i 0.150749π0.150749\pi
752752 −2.03415e12 −0.231955
753753 3.42456e11 0.0388174
754754 1.87167e12 0.210891
755755 4.07094e12 0.455967
756756 −3.62441e11 −0.0403542
757757 −1.10594e12 −0.122406 −0.0612029 0.998125i 0.519494π-0.519494\pi
−0.0612029 + 0.998125i 0.519494π0.519494\pi
758758 −2.12770e12 −0.234099
759759 −7.48455e11 −0.0818611
760760 1.03001e12 0.111990
761761 1.94850e12 0.210606 0.105303 0.994440i 0.466419π-0.466419\pi
0.105303 + 0.994440i 0.466419π0.466419\pi
762762 −1.67726e11 −0.0180220
763763 −5.82347e12 −0.622045
764764 8.16807e12 0.867360
765765 −4.59194e12 −0.484752
766766 −1.19898e12 −0.125829
767767 1.04044e13 1.08552
768768 −3.22599e11 −0.0334609
769769 −1.56599e13 −1.61481 −0.807405 0.589998i 0.799129π-0.799129\pi
−0.807405 + 0.589998i 0.799129π0.799129\pi
770770 −4.30503e11 −0.0441335
771771 8.16395e11 0.0832062
772772 1.13188e13 1.14689
773773 1.42340e13 1.43390 0.716949 0.697126i 0.245538π-0.245538\pi
0.716949 + 0.697126i 0.245538π0.245538\pi
774774 −1.45681e12 −0.145904
775775 2.55504e12 0.254413
776776 −4.58605e12 −0.454005
777777 1.74178e11 0.0171434
778778 1.90786e10 0.00186697
779779 −2.82855e12 −0.275198
780780 −3.06740e11 −0.0296719
781781 1.37440e13 1.32185
782782 −2.73088e12 −0.261139
783783 9.63864e11 0.0916406
784784 1.31999e12 0.124781
785785 −6.67880e12 −0.627747
786786 −7.23877e10 −0.00676493
787787 1.81218e13 1.68390 0.841949 0.539556i 0.181408π-0.181408\pi
0.841949 + 0.539556i 0.181408π0.181408\pi
788788 1.18684e13 1.09654
789789 8.17706e11 0.0751191
790790 −7.00351e10 −0.00639726
791791 3.09957e12 0.281518
792792 5.64088e12 0.509429
793793 −2.61047e13 −2.34418
794794 2.46072e12 0.219720
795795 −2.78386e11 −0.0247170
796796 1.07040e13 0.945015
797797 −2.21087e13 −1.94089 −0.970446 0.241319i 0.922420π-0.922420\pi
−0.970446 + 0.241319i 0.922420π0.922420\pi
798798 −3.09434e10 −0.00270119
799799 3.32643e12 0.288747
800800 1.35670e12 0.117106
801801 −3.99241e12 −0.342680
802802 −2.32425e12 −0.198380
803803 1.17341e13 0.995930
804804 3.41155e11 0.0287939
805805 −2.33831e12 −0.196255
806806 3.91216e12 0.326520
807807 −7.24950e11 −0.0601696
808808 −5.67803e12 −0.468648
809809 1.80822e12 0.148417 0.0742084 0.997243i 0.476357π-0.476357\pi
0.0742084 + 0.997243i 0.476357π0.476357\pi
810810 −1.12273e12 −0.0916413
811811 −1.59062e13 −1.29113 −0.645567 0.763703i 0.723379π-0.723379\pi
−0.645567 + 0.763703i 0.723379π0.723379\pi
812812 −3.68231e12 −0.297247
813813 4.24601e11 0.0340858
814814 −2.65572e12 −0.212017
815815 −8.89370e12 −0.706112
816816 6.71882e11 0.0530502
817817 5.57363e12 0.437662
818818 −2.91522e12 −0.227657
819819 −6.02026e12 −0.467560
820820 −2.46582e12 −0.190458
821821 −1.49953e13 −1.15189 −0.575945 0.817489i 0.695366π-0.695366\pi
−0.575945 + 0.817489i 0.695366π0.695366\pi
822822 −1.06964e11 −0.00817171
823823 2.41121e13 1.83204 0.916020 0.401132i 0.131383π-0.131383\pi
0.916020 + 0.401132i 0.131383π0.131383\pi
824824 −7.86131e12 −0.594049
825825 −1.87627e11 −0.0141011
826826 9.14983e11 0.0683916
827827 −3.51697e12 −0.261453 −0.130727 0.991418i 0.541731π-0.541731\pi
−0.130727 + 0.991418i 0.541731π0.541731\pi
828828 1.49845e13 1.10791
829829 −2.21258e13 −1.62706 −0.813531 0.581522i 0.802457π-0.802457\pi
−0.813531 + 0.581522i 0.802457π0.802457\pi
830830 −1.18732e12 −0.0868394
831831 −9.32333e11 −0.0678214
832832 −1.29039e13 −0.933610
833833 −2.15857e12 −0.155333
834834 −6.18310e9 −0.000442546 0
835835 −1.74154e12 −0.123978
836836 −1.05549e13 −0.747351
837837 2.01467e12 0.141886
838838 −4.22382e12 −0.295875
839839 4.84005e12 0.337226 0.168613 0.985682i 0.446071π-0.446071\pi
0.168613 + 0.985682i 0.446071π0.446071\pi
840840 −5.51562e10 −0.00382241
841841 −4.71452e12 −0.324979
842842 5.32488e12 0.365095
843843 6.16381e11 0.0420364
844844 −3.78600e12 −0.256827
845845 −3.57824e12 −0.241443
846846 8.15870e11 0.0547589
847847 3.35882e12 0.224239
848848 −1.30146e13 −0.864272
849849 6.54471e11 0.0432320
850850 −6.84595e11 −0.0449830
851851 −1.44247e13 −0.942808
852852 8.61194e11 0.0559916
853853 2.65572e13 1.71756 0.858779 0.512345i 0.171223π-0.171223\pi
0.858779 + 0.512345i 0.171223π0.171223\pi
854854 −2.29569e12 −0.147691
855855 4.30899e12 0.275758
856856 5.55081e12 0.353366
857857 −1.86512e13 −1.18112 −0.590560 0.806994i 0.701093π-0.701093\pi
−0.590560 + 0.806994i 0.701093π0.701093\pi
858858 −2.87287e11 −0.0180977
859859 1.19252e13 0.747305 0.373652 0.927569i 0.378105π-0.378105\pi
0.373652 + 0.927569i 0.378105π0.378105\pi
860860 4.85888e12 0.302895
861861 1.51467e11 0.00939299
862862 2.19468e12 0.135390
863863 −1.97885e13 −1.21441 −0.607205 0.794545i 0.707709π-0.707709\pi
−0.607205 + 0.794545i 0.707709π0.707709\pi
864864 1.06977e12 0.0653096
865865 1.07440e13 0.652521
866866 1.58732e12 0.0959037
867867 −1.69405e11 −0.0101822
868868 −7.69675e12 −0.460223
869869 1.46743e12 0.0872909
870870 7.17371e10 0.00424529
871871 1.13511e13 0.668279
872872 1.13760e13 0.666293
873873 −1.91855e13 −1.11792
874874 2.56261e12 0.148553
875875 −5.86182e11 −0.0338062
876876 7.35254e11 0.0421860
877877 −3.21002e12 −0.183235 −0.0916177 0.995794i 0.529204π-0.529204\pi
−0.0916177 + 0.995794i 0.529204π0.529204\pi
878878 −3.90387e12 −0.221702
879879 5.42087e11 0.0306281
880880 −8.77164e12 −0.493070
881881 −3.43067e13 −1.91862 −0.959308 0.282363i 0.908882π-0.908882\pi
−0.959308 + 0.282363i 0.908882π0.908882\pi
882882 −5.29431e11 −0.0294579
883883 −2.27401e13 −1.25884 −0.629418 0.777067i 0.716707π-0.716707\pi
−0.629418 + 0.777067i 0.716707π0.716707\pi
884884 2.34504e13 1.29156
885885 3.98779e11 0.0218518
886886 −4.15274e12 −0.226403
887887 3.40833e13 1.84878 0.924390 0.381448i 0.124574π-0.124574\pi
0.924390 + 0.381448i 0.124574π0.124574\pi
888888 −3.40251e11 −0.0183629
889889 1.09794e13 0.589550
890890 −5.95212e11 −0.0317993
891891 2.35243e13 1.25045
892892 −1.06361e13 −0.562524
893893 −3.12145e12 −0.164257
894894 3.78326e11 0.0198083
895895 1.44516e13 0.752857
896896 −5.40436e12 −0.280129
897897 −1.56042e12 −0.0804776
898898 −1.25628e10 −0.000644680 0
899899 2.04685e13 1.04512
900900 3.75641e12 0.190845
901901 2.12827e13 1.07588
902902 −2.30944e12 −0.116166
903903 −2.98464e11 −0.0149382
904904 −6.05492e12 −0.301544
905905 −1.43089e13 −0.709068
906906 2.38907e11 0.0117802
907907 −2.39990e13 −1.17750 −0.588750 0.808315i 0.700380π-0.700380\pi
−0.588750 + 0.808315i 0.700380π0.700380\pi
908908 −2.35082e13 −1.14771
909909 −2.37538e13 −1.15397
910910 −8.97537e11 −0.0433876
911911 1.81078e13 0.871029 0.435515 0.900182i 0.356566π-0.356566\pi
0.435515 + 0.900182i 0.356566π0.356566\pi
912912 −6.30481e11 −0.0301783
913913 2.48777e13 1.18493
914914 4.38577e12 0.207868
915915 −1.00054e12 −0.0471888
916916 −2.02090e13 −0.948451
917917 4.73852e12 0.221300
918918 −5.39809e11 −0.0250869
919919 −1.93468e12 −0.0894724 −0.0447362 0.998999i 0.514245π-0.514245\pi
−0.0447362 + 0.998999i 0.514245π0.514245\pi
920920 4.56782e12 0.210215
921921 −1.35432e11 −0.00620229
922922 −1.29226e12 −0.0588926
923923 2.86542e13 1.29951
924924 5.65206e11 0.0255084
925925 −3.61607e12 −0.162405
926926 −6.90568e11 −0.0308644
927927 −3.28874e13 −1.46275
928928 1.08686e13 0.481068
929929 2.56977e13 1.13194 0.565971 0.824425i 0.308501π-0.308501\pi
0.565971 + 0.824425i 0.308501π0.308501\pi
930930 1.49945e11 0.00657291
931931 2.02556e12 0.0883633
932932 3.55457e13 1.54317
933933 1.75985e12 0.0760341
934934 7.62771e12 0.327969
935935 1.43442e13 0.613795
936936 1.17604e13 0.500819
937937 2.26453e13 0.959731 0.479865 0.877342i 0.340686π-0.340686\pi
0.479865 + 0.877342i 0.340686π0.340686\pi
938938 9.98237e11 0.0421038
939939 −4.82447e11 −0.0202514
940940 −2.72116e12 −0.113679
941941 2.28097e13 0.948345 0.474173 0.880432i 0.342747π-0.342747\pi
0.474173 + 0.880432i 0.342747π0.342747\pi
942942 −3.91952e11 −0.0162182
943943 −1.25439e13 −0.516570
944944 1.86431e13 0.764088
945945 −4.62209e11 −0.0188536
946946 4.55074e12 0.184745
947947 3.24218e12 0.130997 0.0654987 0.997853i 0.479136π-0.479136\pi
0.0654987 + 0.997853i 0.479136π0.479136\pi
948948 9.19488e10 0.00369750
949949 2.44638e13 0.979099
950950 6.42410e11 0.0255892
951951 8.13946e11 0.0322689
952952 4.21671e12 0.166382
953953 −4.96092e13 −1.94825 −0.974124 0.226014i 0.927430π-0.927430\pi
−0.974124 + 0.226014i 0.927430π0.927430\pi
954954 5.21999e12 0.204034
955955 1.04165e13 0.405234
956956 −4.05354e13 −1.56955
957957 −1.50309e12 −0.0579271
958958 4.88993e12 0.187567
959959 7.00187e12 0.267319
960960 −4.94578e11 −0.0187938
961961 1.63436e13 0.618149
962962 −5.53678e12 −0.208434
963963 2.32216e13 0.870108
964964 −2.77542e13 −1.03510
965965 1.44345e13 0.535832
966966 −1.37226e11 −0.00507036
967967 −2.45015e13 −0.901100 −0.450550 0.892751i 0.648772π-0.648772\pi
−0.450550 + 0.892751i 0.648772π0.648772\pi
968968 −6.56135e12 −0.240190
969969 1.03102e12 0.0375672
970970 −2.86029e12 −0.103738
971971 −1.85016e13 −0.667917 −0.333958 0.942588i 0.608384π-0.608384\pi
−0.333958 + 0.942588i 0.608384π0.608384\pi
972972 4.44525e12 0.159734
973973 4.04747e11 0.0144769
974974 −3.06664e12 −0.109181
975975 −3.91176e11 −0.0138628
976976 −4.67755e13 −1.65004
977977 −2.19913e13 −0.772193 −0.386096 0.922458i 0.626177π-0.626177\pi
−0.386096 + 0.922458i 0.626177π0.626177\pi
978978 −5.21936e11 −0.0182428
979979 1.24714e13 0.433902
980980 1.76581e12 0.0611541
981981 4.75909e13 1.64064
982982 −7.93255e12 −0.272214
983983 1.25865e12 0.0429946 0.0214973 0.999769i 0.493157π-0.493157\pi
0.0214973 + 0.999769i 0.493157π0.493157\pi
984984 −2.95887e11 −0.0100611
985985 1.51354e13 0.512307
986986 −5.48432e12 −0.184789
987987 1.67152e11 0.00560639
988988 −2.20054e13 −0.734721
989989 2.47176e13 0.821530
990990 3.51818e12 0.116402
991991 −5.19617e12 −0.171140 −0.0855701 0.996332i 0.527271π-0.527271\pi
−0.0855701 + 0.996332i 0.527271π0.527271\pi
992992 2.27174e13 0.744829
993993 −9.37245e11 −0.0305901
994994 2.51990e12 0.0818736
995995 1.36505e13 0.441515
996996 1.55883e12 0.0501917
997997 5.63563e12 0.180640 0.0903200 0.995913i 0.471211π-0.471211\pi
0.0903200 + 0.995913i 0.471211π0.471211\pi
998998 −4.65034e12 −0.148387
999999 −2.85130e12 −0.0905730
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 35.10.a.d.1.3 5
3.2 odd 2 315.10.a.j.1.3 5
5.2 odd 4 175.10.b.f.99.6 10
5.3 odd 4 175.10.b.f.99.5 10
5.4 even 2 175.10.a.f.1.3 5
7.6 odd 2 245.10.a.f.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.10.a.d.1.3 5 1.1 even 1 trivial
175.10.a.f.1.3 5 5.4 even 2
175.10.b.f.99.5 10 5.3 odd 4
175.10.b.f.99.6 10 5.2 odd 4
245.10.a.f.1.3 5 7.6 odd 2
315.10.a.j.1.3 5 3.2 odd 2