L(s) = 1 | − 34.1·2-s − 128.·3-s + 652.·4-s + 625·5-s + 4.38e3·6-s − 4.80e3·8-s − 3.21e3·9-s − 2.13e4·10-s − 2.66e4·11-s − 8.37e4·12-s + 1.32e5·13-s − 8.02e4·15-s − 1.70e5·16-s − 6.18e5·17-s + 1.09e5·18-s + 8.29e5·19-s + 4.07e5·20-s + 9.11e5·22-s − 1.47e6·23-s + 6.16e5·24-s + 3.90e5·25-s − 4.53e6·26-s + 2.93e6·27-s − 2.50e6·29-s + 2.73e6·30-s + 7.91e6·31-s + 8.27e6·32-s + ⋯ |
L(s) = 1 | − 1.50·2-s − 0.914·3-s + 1.27·4-s + 0.447·5-s + 1.37·6-s − 0.414·8-s − 0.163·9-s − 0.674·10-s − 0.549·11-s − 1.16·12-s + 1.29·13-s − 0.409·15-s − 0.649·16-s − 1.79·17-s + 0.246·18-s + 1.46·19-s + 0.570·20-s + 0.829·22-s − 1.10·23-s + 0.379·24-s + 0.200·25-s − 1.94·26-s + 1.06·27-s − 0.656·29-s + 0.617·30-s + 1.53·31-s + 1.39·32-s + ⋯ |
Λ(s)=(=(245s/2ΓC(s)L(s)Λ(10−s)
Λ(s)=(=(245s/2ΓC(s+9/2)L(s)Λ(1−s)
Particular Values
L(5) |
≈ |
0.5080814337 |
L(21) |
≈ |
0.5080814337 |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1−625T |
| 7 | 1 |
good | 2 | 1+34.1T+512T2 |
| 3 | 1+128.T+1.96e4T2 |
| 11 | 1+2.66e4T+2.35e9T2 |
| 13 | 1−1.32e5T+1.06e10T2 |
| 17 | 1+6.18e5T+1.18e11T2 |
| 19 | 1−8.29e5T+3.22e11T2 |
| 23 | 1+1.47e6T+1.80e12T2 |
| 29 | 1+2.50e6T+1.45e13T2 |
| 31 | 1−7.91e6T+2.64e13T2 |
| 37 | 1−1.58e7T+1.29e14T2 |
| 41 | 1−2.61e5T+3.27e14T2 |
| 43 | 1−5.00e6T+5.02e14T2 |
| 47 | 1+3.34e5T+1.11e15T2 |
| 53 | 1−8.05e6T+3.29e15T2 |
| 59 | 1+1.22e8T+8.66e15T2 |
| 61 | 1+1.02e8T+1.16e16T2 |
| 67 | 1+1.08e7T+2.72e16T2 |
| 71 | 1+7.47e7T+4.58e16T2 |
| 73 | 1−1.10e8T+5.88e16T2 |
| 79 | 1+5.30e8T+1.19e17T2 |
| 83 | 1+1.85e8T+1.86e17T2 |
| 89 | 1−2.72e7T+3.50e17T2 |
| 97 | 1−4.03e8T+7.60e17T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.47819901182460825531291975075, −9.514562608010355661716224573751, −8.663133059683176481667889887434, −7.77213109210290031553506264357, −6.53867701780348637827830992024, −5.84887344891189691512550031026, −4.51298218211041816606222639399, −2.66805699882523536228795738023, −1.42777122827974379080456778108, −0.46265917565060696656456377019,
0.46265917565060696656456377019, 1.42777122827974379080456778108, 2.66805699882523536228795738023, 4.51298218211041816606222639399, 5.84887344891189691512550031026, 6.53867701780348637827830992024, 7.77213109210290031553506264357, 8.663133059683176481667889887434, 9.514562608010355661716224573751, 10.47819901182460825531291975075