Properties

Label 245.10.a.m
Level 245245
Weight 1010
Character orbit 245.a
Self dual yes
Analytic conductor 126.184126.184
Analytic rank 00
Dimension 1313
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,10,Mod(1,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: N N == 245=572 245 = 5 \cdot 7^{2}
Weight: k k == 10 10
Character orbit: [χ][\chi] == 245.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 126.183779860126.183779860
Analytic rank: 00
Dimension: 1313
Coefficient field: Q[x]/(x13)\mathbb{Q}[x]/(x^{13} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x13x125109x11+3203x10+9635922x9+242128x88405086048x7+96 ⁣ ⁣52 x^{13} - x^{12} - 5109 x^{11} + 3203 x^{10} + 9635922 x^{9} + 242128 x^{8} - 8405086048 x^{7} + \cdots - 96\!\cdots\!52 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 214335377 2^{14}\cdot 3^{3}\cdot 5^{3}\cdot 7^{7}
Twist minimal: no (minimal twist has level 35)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β121,\beta_1,\ldots,\beta_{12} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2+(β3+21)q3+(β3+β2+β1+274)q4+625q5+(β4+β3+β2++238)q6+(β5β4+8β3+334)q8++(1334β12+17371β11++405275727)q99+O(q100) q - \beta_1 q^{2} + (\beta_{3} + 21) q^{3} + (\beta_{3} + \beta_{2} + \beta_1 + 274) q^{4} + 625 q^{5} + ( - \beta_{4} + \beta_{3} + \beta_{2} + \cdots + 238) q^{6} + ( - \beta_{5} - \beta_{4} + 8 \beta_{3} + \cdots - 334) q^{8}+ \cdots + ( - 1334 \beta_{12} + 17371 \beta_{11} + \cdots + 405275727) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 13qq2+268q3+3563q4+8125q5+3040q64695q8+82107q9625q10+129087q11+356068q12+35889q13+167500q15+1379187q16+251650q17+391089q18++5266142099q99+O(q100) 13 q - q^{2} + 268 q^{3} + 3563 q^{4} + 8125 q^{5} + 3040 q^{6} - 4695 q^{8} + 82107 q^{9} - 625 q^{10} + 129087 q^{11} + 356068 q^{12} + 35889 q^{13} + 167500 q^{15} + 1379187 q^{16} + 251650 q^{17} + 391089 q^{18}+ \cdots + 5266142099 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x13x125109x11+3203x10+9635922x9+242128x88405086048x7+96 ⁣ ⁣52 x^{13} - x^{12} - 5109 x^{11} + 3203 x^{10} + 9635922 x^{9} + 242128 x^{8} - 8405086048 x^{7} + \cdots - 96\!\cdots\!52 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (15 ⁣ ⁣47ν12+42 ⁣ ⁣80)/46 ⁣ ⁣12 ( - 15\!\cdots\!47 \nu^{12} + \cdots - 42\!\cdots\!80 ) / 46\!\cdots\!12 Copy content Toggle raw display
β3\beta_{3}== (15 ⁣ ⁣47ν12++60 ⁣ ⁣48)/46 ⁣ ⁣12 ( 15\!\cdots\!47 \nu^{12} + \cdots + 60\!\cdots\!48 ) / 46\!\cdots\!12 Copy content Toggle raw display
β4\beta_{4}== (11 ⁣ ⁣89ν12++30 ⁣ ⁣92)/11 ⁣ ⁣28 ( - 11\!\cdots\!89 \nu^{12} + \cdots + 30\!\cdots\!92 ) / 11\!\cdots\!28 Copy content Toggle raw display
β5\beta_{5}== (68 ⁣ ⁣19ν12+87 ⁣ ⁣76)/23 ⁣ ⁣56 ( 68\!\cdots\!19 \nu^{12} + \cdots - 87\!\cdots\!76 ) / 23\!\cdots\!56 Copy content Toggle raw display
β6\beta_{6}== (19 ⁣ ⁣43ν12+14 ⁣ ⁣72)/15 ⁣ ⁣04 ( 19\!\cdots\!43 \nu^{12} + \cdots - 14\!\cdots\!72 ) / 15\!\cdots\!04 Copy content Toggle raw display
β7\beta_{7}== (31 ⁣ ⁣25ν12+36 ⁣ ⁣08)/11 ⁣ ⁣28 ( 31\!\cdots\!25 \nu^{12} + \cdots - 36\!\cdots\!08 ) / 11\!\cdots\!28 Copy content Toggle raw display
β8\beta_{8}== (55 ⁣ ⁣27ν12+31 ⁣ ⁣00)/15 ⁣ ⁣04 ( 55\!\cdots\!27 \nu^{12} + \cdots - 31\!\cdots\!00 ) / 15\!\cdots\!04 Copy content Toggle raw display
β9\beta_{9}== (58 ⁣ ⁣75ν12++32 ⁣ ⁣88)/15 ⁣ ⁣04 ( - 58\!\cdots\!75 \nu^{12} + \cdots + 32\!\cdots\!88 ) / 15\!\cdots\!04 Copy content Toggle raw display
β10\beta_{10}== (60 ⁣ ⁣87ν12++46 ⁣ ⁣76)/58 ⁣ ⁣64 ( - 60\!\cdots\!87 \nu^{12} + \cdots + 46\!\cdots\!76 ) / 58\!\cdots\!64 Copy content Toggle raw display
β11\beta_{11}== (62 ⁣ ⁣43ν12++26 ⁣ ⁣40)/46 ⁣ ⁣12 ( - 62\!\cdots\!43 \nu^{12} + \cdots + 26\!\cdots\!40 ) / 46\!\cdots\!12 Copy content Toggle raw display
β12\beta_{12}== (10 ⁣ ⁣19ν12++38 ⁣ ⁣80)/46 ⁣ ⁣12 ( - 10\!\cdots\!19 \nu^{12} + \cdots + 38\!\cdots\!80 ) / 46\!\cdots\!12 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β3+β2+β1+786 \beta_{3} + \beta_{2} + \beta _1 + 786 Copy content Toggle raw display
ν3\nu^{3}== β5+β48β32β2+1335β1+334 \beta_{5} + \beta_{4} - 8\beta_{3} - 2\beta_{2} + 1335\beta _1 + 334 Copy content Toggle raw display
ν4\nu^{4}== 2β12+5β11+3β9+β8+6β7+2β67β5++1051468 - 2 \beta_{12} + 5 \beta_{11} + 3 \beta_{9} + \beta_{8} + 6 \beta_{7} + 2 \beta_{6} - 7 \beta_{5} + \cdots + 1051468 Copy content Toggle raw display
ν5\nu^{5}== 14β1290β11+102β10+2β9+68β8140β7+219792 14 \beta_{12} - 90 \beta_{11} + 102 \beta_{10} + 2 \beta_{9} + 68 \beta_{8} - 140 \beta_{7} + \cdots - 219792 Copy content Toggle raw display
ν6\nu^{6}== 4960β12+16113β111250β10+7535β9+4191β8++1675490862 - 4960 \beta_{12} + 16113 \beta_{11} - 1250 \beta_{10} + 7535 \beta_{9} + 4191 \beta_{8} + \cdots + 1675490862 Copy content Toggle raw display
ν7\nu^{7}== 38956β12298852β11+327268β1017980β9+204948β8+3460687922 38956 \beta_{12} - 298852 \beta_{11} + 327268 \beta_{10} - 17980 \beta_{9} + 204948 \beta_{8} + \cdots - 3460687922 Copy content Toggle raw display
ν8\nu^{8}== 10078794β12+39066893β114060376β10+15408491β9++2892994683596 - 10078794 \beta_{12} + 39066893 \beta_{11} - 4060376 \beta_{10} + 15408491 \beta_{9} + \cdots + 2892994683596 Copy content Toggle raw display
ν9\nu^{9}== 80096150β12751957078β11+799945494β1092840322β9+12799081766744 80096150 \beta_{12} - 751957078 \beta_{11} + 799945494 \beta_{10} - 92840322 \beta_{9} + \cdots - 12799081766744 Copy content Toggle raw display
ν10\nu^{10}== 19599857440β12+85663414677β119925013066β10+29962185483β9++52 ⁣ ⁣54 - 19599857440 \beta_{12} + 85663414677 \beta_{11} - 9925013066 \beta_{10} + 29962185483 \beta_{9} + \cdots + 52\!\cdots\!54 Copy content Toggle raw display
ν11\nu^{11}== 156594515668β121729478338264β11+1777006887972β10294213318376β9+35 ⁣ ⁣34 156594515668 \beta_{12} - 1729478338264 \beta_{11} + 1777006887972 \beta_{10} - 294213318376 \beta_{9} + \cdots - 35\!\cdots\!34 Copy content Toggle raw display
ν12\nu^{12}== 37853573041914β12+179558986649977β1122373125097184β10++97 ⁣ ⁣96 - 37853573041914 \beta_{12} + 179558986649977 \beta_{11} - 22373125097184 \beta_{10} + \cdots + 97\!\cdots\!96 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
43.3172
36.4811
34.1284
21.3241
15.1795
9.52028
2.56137
−13.9930
−15.4429
−24.0875
−26.9956
−35.9424
−45.0506
−43.3172 196.236 1364.38 625.000 −8500.37 0 −36922.6 18825.4 −27073.2
1.2 −36.4811 −102.189 818.871 625.000 3727.97 0 −11195.0 −9240.37 −22800.7
1.3 −34.1284 −128.345 652.750 625.000 4380.23 0 −4803.59 −3210.47 −21330.3
1.4 −21.3241 190.064 −57.2810 625.000 −4052.95 0 12139.4 16441.3 −13327.6
1.5 −15.1795 45.9146 −281.582 625.000 −696.962 0 12046.2 −17574.9 −9487.21
1.6 −9.52028 −175.497 −421.364 625.000 1670.78 0 8885.89 11116.2 −5950.18
1.7 −2.56137 177.556 −505.439 625.000 −454.786 0 2606.03 11843.1 −1600.85
1.8 13.9930 −255.495 −316.195 625.000 −3575.14 0 −11589.0 45594.6 8745.64
1.9 15.4429 −46.3250 −273.516 625.000 −715.393 0 −12130.7 −17537.0 9651.82
1.10 24.0875 256.792 68.2094 625.000 6185.48 0 −10689.8 46259.1 15054.7
1.11 26.9956 40.9716 216.763 625.000 1106.05 0 −7970.10 −18004.3 16872.3
1.12 35.9424 −97.4212 779.854 625.000 −3501.55 0 9627.32 −10192.1 22464.0
1.13 45.0506 165.739 1517.55 625.000 7466.64 0 45300.8 7786.42 28156.6
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.13
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
55 1 -1
77 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 245.10.a.m 13
7.b odd 2 1 245.10.a.l 13
7.c even 3 2 35.10.e.b 26
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.10.e.b 26 7.c even 3 2
245.10.a.l 13 7.b odd 2 1
245.10.a.m 13 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S10new(Γ0(245))S_{10}^{\mathrm{new}}(\Gamma_0(245)):

T213+T2125109T2113203T210+9635922T29242128T28++96 ⁣ ⁣52 T_{2}^{13} + T_{2}^{12} - 5109 T_{2}^{11} - 3203 T_{2}^{10} + 9635922 T_{2}^{9} - 242128 T_{2}^{8} + \cdots + 96\!\cdots\!52 Copy content Toggle raw display
T313268T312133081T311+36954174T310+6155444118T39+14 ⁣ ⁣28 T_{3}^{13} - 268 T_{3}^{12} - 133081 T_{3}^{11} + 36954174 T_{3}^{10} + 6155444118 T_{3}^{9} + \cdots - 14\!\cdots\!28 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T13++96 ⁣ ⁣52 T^{13} + \cdots + 96\!\cdots\!52 Copy content Toggle raw display
33 T13+14 ⁣ ⁣28 T^{13} + \cdots - 14\!\cdots\!28 Copy content Toggle raw display
55 (T625)13 (T - 625)^{13} Copy content Toggle raw display
77 T13 T^{13} Copy content Toggle raw display
1111 T13++29 ⁣ ⁣00 T^{13} + \cdots + 29\!\cdots\!00 Copy content Toggle raw display
1313 T13++17 ⁣ ⁣28 T^{13} + \cdots + 17\!\cdots\!28 Copy content Toggle raw display
1717 T13+12 ⁣ ⁣04 T^{13} + \cdots - 12\!\cdots\!04 Copy content Toggle raw display
1919 T13++19 ⁣ ⁣72 T^{13} + \cdots + 19\!\cdots\!72 Copy content Toggle raw display
2323 T13+12 ⁣ ⁣81 T^{13} + \cdots - 12\!\cdots\!81 Copy content Toggle raw display
2929 T13+32 ⁣ ⁣00 T^{13} + \cdots - 32\!\cdots\!00 Copy content Toggle raw display
3131 T13+33 ⁣ ⁣48 T^{13} + \cdots - 33\!\cdots\!48 Copy content Toggle raw display
3737 T13+18 ⁣ ⁣00 T^{13} + \cdots - 18\!\cdots\!00 Copy content Toggle raw display
4141 T13++38 ⁣ ⁣25 T^{13} + \cdots + 38\!\cdots\!25 Copy content Toggle raw display
4343 T13+56 ⁣ ⁣48 T^{13} + \cdots - 56\!\cdots\!48 Copy content Toggle raw display
4747 T13++75 ⁣ ⁣00 T^{13} + \cdots + 75\!\cdots\!00 Copy content Toggle raw display
5353 T13+18 ⁣ ⁣68 T^{13} + \cdots - 18\!\cdots\!68 Copy content Toggle raw display
5959 T13+13 ⁣ ⁣00 T^{13} + \cdots - 13\!\cdots\!00 Copy content Toggle raw display
6161 T13++26 ⁣ ⁣48 T^{13} + \cdots + 26\!\cdots\!48 Copy content Toggle raw display
6767 T13++23 ⁣ ⁣00 T^{13} + \cdots + 23\!\cdots\!00 Copy content Toggle raw display
7171 T13+17 ⁣ ⁣68 T^{13} + \cdots - 17\!\cdots\!68 Copy content Toggle raw display
7373 T13++18 ⁣ ⁣72 T^{13} + \cdots + 18\!\cdots\!72 Copy content Toggle raw display
7979 T13++24 ⁣ ⁣36 T^{13} + \cdots + 24\!\cdots\!36 Copy content Toggle raw display
8383 T13++71 ⁣ ⁣04 T^{13} + \cdots + 71\!\cdots\!04 Copy content Toggle raw display
8989 T13+15 ⁣ ⁣52 T^{13} + \cdots - 15\!\cdots\!52 Copy content Toggle raw display
9797 T13++26 ⁣ ⁣16 T^{13} + \cdots + 26\!\cdots\!16 Copy content Toggle raw display
show more
show less