Properties

Label 245.10.a.m
Level $245$
Weight $10$
Character orbit 245.a
Self dual yes
Analytic conductor $126.184$
Analytic rank $0$
Dimension $13$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,10,Mod(1,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 245.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(126.183779860\)
Analytic rank: \(0\)
Dimension: \(13\)
Coefficient field: \(\mathbb{Q}[x]/(x^{13} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{13} - x^{12} - 5109 x^{11} + 3203 x^{10} + 9635922 x^{9} + 242128 x^{8} - 8405086048 x^{7} + \cdots - 96\!\cdots\!52 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{14}\cdot 3^{3}\cdot 5^{3}\cdot 7^{7} \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{12}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{3} + 21) q^{3} + (\beta_{3} + \beta_{2} + \beta_1 + 274) q^{4} + 625 q^{5} + ( - \beta_{4} + \beta_{3} + \beta_{2} + \cdots + 238) q^{6} + ( - \beta_{5} - \beta_{4} + 8 \beta_{3} + \cdots - 334) q^{8}+ \cdots + ( - 1334 \beta_{12} + 17371 \beta_{11} + \cdots + 405275727) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 13 q - q^{2} + 268 q^{3} + 3563 q^{4} + 8125 q^{5} + 3040 q^{6} - 4695 q^{8} + 82107 q^{9} - 625 q^{10} + 129087 q^{11} + 356068 q^{12} + 35889 q^{13} + 167500 q^{15} + 1379187 q^{16} + 251650 q^{17} + 391089 q^{18}+ \cdots + 5266142099 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{13} - x^{12} - 5109 x^{11} + 3203 x^{10} + 9635922 x^{9} + 242128 x^{8} - 8405086048 x^{7} + \cdots - 96\!\cdots\!52 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 15\!\cdots\!47 \nu^{12} + \cdots - 42\!\cdots\!80 ) / 46\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 15\!\cdots\!47 \nu^{12} + \cdots + 60\!\cdots\!48 ) / 46\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 11\!\cdots\!89 \nu^{12} + \cdots + 30\!\cdots\!92 ) / 11\!\cdots\!28 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 68\!\cdots\!19 \nu^{12} + \cdots - 87\!\cdots\!76 ) / 23\!\cdots\!56 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 19\!\cdots\!43 \nu^{12} + \cdots - 14\!\cdots\!72 ) / 15\!\cdots\!04 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 31\!\cdots\!25 \nu^{12} + \cdots - 36\!\cdots\!08 ) / 11\!\cdots\!28 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 55\!\cdots\!27 \nu^{12} + \cdots - 31\!\cdots\!00 ) / 15\!\cdots\!04 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 58\!\cdots\!75 \nu^{12} + \cdots + 32\!\cdots\!88 ) / 15\!\cdots\!04 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 60\!\cdots\!87 \nu^{12} + \cdots + 46\!\cdots\!76 ) / 58\!\cdots\!64 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 62\!\cdots\!43 \nu^{12} + \cdots + 26\!\cdots\!40 ) / 46\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 10\!\cdots\!19 \nu^{12} + \cdots + 38\!\cdots\!80 ) / 46\!\cdots\!12 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta_{2} + \beta _1 + 786 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} + \beta_{4} - 8\beta_{3} - 2\beta_{2} + 1335\beta _1 + 334 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( - 2 \beta_{12} + 5 \beta_{11} + 3 \beta_{9} + \beta_{8} + 6 \beta_{7} + 2 \beta_{6} - 7 \beta_{5} + \cdots + 1051468 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 14 \beta_{12} - 90 \beta_{11} + 102 \beta_{10} + 2 \beta_{9} + 68 \beta_{8} - 140 \beta_{7} + \cdots - 219792 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - 4960 \beta_{12} + 16113 \beta_{11} - 1250 \beta_{10} + 7535 \beta_{9} + 4191 \beta_{8} + \cdots + 1675490862 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 38956 \beta_{12} - 298852 \beta_{11} + 327268 \beta_{10} - 17980 \beta_{9} + 204948 \beta_{8} + \cdots - 3460687922 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 10078794 \beta_{12} + 39066893 \beta_{11} - 4060376 \beta_{10} + 15408491 \beta_{9} + \cdots + 2892994683596 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 80096150 \beta_{12} - 751957078 \beta_{11} + 799945494 \beta_{10} - 92840322 \beta_{9} + \cdots - 12799081766744 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 19599857440 \beta_{12} + 85663414677 \beta_{11} - 9925013066 \beta_{10} + 29962185483 \beta_{9} + \cdots + 52\!\cdots\!54 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 156594515668 \beta_{12} - 1729478338264 \beta_{11} + 1777006887972 \beta_{10} - 294213318376 \beta_{9} + \cdots - 35\!\cdots\!34 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 37853573041914 \beta_{12} + 179558986649977 \beta_{11} - 22373125097184 \beta_{10} + \cdots + 97\!\cdots\!96 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
43.3172
36.4811
34.1284
21.3241
15.1795
9.52028
2.56137
−13.9930
−15.4429
−24.0875
−26.9956
−35.9424
−45.0506
−43.3172 196.236 1364.38 625.000 −8500.37 0 −36922.6 18825.4 −27073.2
1.2 −36.4811 −102.189 818.871 625.000 3727.97 0 −11195.0 −9240.37 −22800.7
1.3 −34.1284 −128.345 652.750 625.000 4380.23 0 −4803.59 −3210.47 −21330.3
1.4 −21.3241 190.064 −57.2810 625.000 −4052.95 0 12139.4 16441.3 −13327.6
1.5 −15.1795 45.9146 −281.582 625.000 −696.962 0 12046.2 −17574.9 −9487.21
1.6 −9.52028 −175.497 −421.364 625.000 1670.78 0 8885.89 11116.2 −5950.18
1.7 −2.56137 177.556 −505.439 625.000 −454.786 0 2606.03 11843.1 −1600.85
1.8 13.9930 −255.495 −316.195 625.000 −3575.14 0 −11589.0 45594.6 8745.64
1.9 15.4429 −46.3250 −273.516 625.000 −715.393 0 −12130.7 −17537.0 9651.82
1.10 24.0875 256.792 68.2094 625.000 6185.48 0 −10689.8 46259.1 15054.7
1.11 26.9956 40.9716 216.763 625.000 1106.05 0 −7970.10 −18004.3 16872.3
1.12 35.9424 −97.4212 779.854 625.000 −3501.55 0 9627.32 −10192.1 22464.0
1.13 45.0506 165.739 1517.55 625.000 7466.64 0 45300.8 7786.42 28156.6
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.13
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 245.10.a.m 13
7.b odd 2 1 245.10.a.l 13
7.c even 3 2 35.10.e.b 26
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.10.e.b 26 7.c even 3 2
245.10.a.l 13 7.b odd 2 1
245.10.a.m 13 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(245))\):

\( T_{2}^{13} + T_{2}^{12} - 5109 T_{2}^{11} - 3203 T_{2}^{10} + 9635922 T_{2}^{9} - 242128 T_{2}^{8} + \cdots + 96\!\cdots\!52 \) Copy content Toggle raw display
\( T_{3}^{13} - 268 T_{3}^{12} - 133081 T_{3}^{11} + 36954174 T_{3}^{10} + 6155444118 T_{3}^{9} + \cdots - 14\!\cdots\!28 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{13} + \cdots + 96\!\cdots\!52 \) Copy content Toggle raw display
$3$ \( T^{13} + \cdots - 14\!\cdots\!28 \) Copy content Toggle raw display
$5$ \( (T - 625)^{13} \) Copy content Toggle raw display
$7$ \( T^{13} \) Copy content Toggle raw display
$11$ \( T^{13} + \cdots + 29\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{13} + \cdots + 17\!\cdots\!28 \) Copy content Toggle raw display
$17$ \( T^{13} + \cdots - 12\!\cdots\!04 \) Copy content Toggle raw display
$19$ \( T^{13} + \cdots + 19\!\cdots\!72 \) Copy content Toggle raw display
$23$ \( T^{13} + \cdots - 12\!\cdots\!81 \) Copy content Toggle raw display
$29$ \( T^{13} + \cdots - 32\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{13} + \cdots - 33\!\cdots\!48 \) Copy content Toggle raw display
$37$ \( T^{13} + \cdots - 18\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{13} + \cdots + 38\!\cdots\!25 \) Copy content Toggle raw display
$43$ \( T^{13} + \cdots - 56\!\cdots\!48 \) Copy content Toggle raw display
$47$ \( T^{13} + \cdots + 75\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{13} + \cdots - 18\!\cdots\!68 \) Copy content Toggle raw display
$59$ \( T^{13} + \cdots - 13\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{13} + \cdots + 26\!\cdots\!48 \) Copy content Toggle raw display
$67$ \( T^{13} + \cdots + 23\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( T^{13} + \cdots - 17\!\cdots\!68 \) Copy content Toggle raw display
$73$ \( T^{13} + \cdots + 18\!\cdots\!72 \) Copy content Toggle raw display
$79$ \( T^{13} + \cdots + 24\!\cdots\!36 \) Copy content Toggle raw display
$83$ \( T^{13} + \cdots + 71\!\cdots\!04 \) Copy content Toggle raw display
$89$ \( T^{13} + \cdots - 15\!\cdots\!52 \) Copy content Toggle raw display
$97$ \( T^{13} + \cdots + 26\!\cdots\!16 \) Copy content Toggle raw display
show more
show less