Properties

Label 2-245-1.1-c9-0-66
Degree $2$
Conductor $245$
Sign $-1$
Analytic cond. $126.183$
Root an. cond. $11.2331$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 14.2·2-s − 145.·3-s − 309.·4-s − 625·5-s − 2.06e3·6-s − 1.16e4·8-s + 1.48e3·9-s − 8.88e3·10-s + 3.04e3·11-s + 4.50e4·12-s + 6.70e4·13-s + 9.09e4·15-s − 7.52e3·16-s − 2.62e5·17-s + 2.10e4·18-s − 5.12e4·19-s + 1.93e5·20-s + 4.33e4·22-s − 8.29e5·23-s + 1.70e6·24-s + 3.90e5·25-s + 9.53e5·26-s + 2.64e6·27-s + 7.28e6·29-s + 1.29e6·30-s − 2.35e5·31-s + 5.87e6·32-s + ⋯
L(s)  = 1  + 0.628·2-s − 1.03·3-s − 0.605·4-s − 0.447·5-s − 0.651·6-s − 1.00·8-s + 0.0752·9-s − 0.281·10-s + 0.0627·11-s + 0.627·12-s + 0.650·13-s + 0.463·15-s − 0.0287·16-s − 0.762·17-s + 0.0473·18-s − 0.0901·19-s + 0.270·20-s + 0.0394·22-s − 0.617·23-s + 1.04·24-s + 0.200·25-s + 0.409·26-s + 0.958·27-s + 1.91·29-s + 0.291·30-s − 0.0458·31-s + 0.990·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(245\)    =    \(5 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(126.183\)
Root analytic conductor: \(11.2331\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 245,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 625T \)
7 \( 1 \)
good2 \( 1 - 14.2T + 512T^{2} \)
3 \( 1 + 145.T + 1.96e4T^{2} \)
11 \( 1 - 3.04e3T + 2.35e9T^{2} \)
13 \( 1 - 6.70e4T + 1.06e10T^{2} \)
17 \( 1 + 2.62e5T + 1.18e11T^{2} \)
19 \( 1 + 5.12e4T + 3.22e11T^{2} \)
23 \( 1 + 8.29e5T + 1.80e12T^{2} \)
29 \( 1 - 7.28e6T + 1.45e13T^{2} \)
31 \( 1 + 2.35e5T + 2.64e13T^{2} \)
37 \( 1 - 1.69e7T + 1.29e14T^{2} \)
41 \( 1 + 4.53e6T + 3.27e14T^{2} \)
43 \( 1 - 3.23e6T + 5.02e14T^{2} \)
47 \( 1 - 6.45e6T + 1.11e15T^{2} \)
53 \( 1 - 1.88e7T + 3.29e15T^{2} \)
59 \( 1 + 1.73e8T + 8.66e15T^{2} \)
61 \( 1 - 9.62e7T + 1.16e16T^{2} \)
67 \( 1 + 8.30e5T + 2.72e16T^{2} \)
71 \( 1 - 9.97e7T + 4.58e16T^{2} \)
73 \( 1 + 2.22e8T + 5.88e16T^{2} \)
79 \( 1 + 1.53e7T + 1.19e17T^{2} \)
83 \( 1 + 2.19e8T + 1.86e17T^{2} \)
89 \( 1 + 7.71e6T + 3.50e17T^{2} \)
97 \( 1 + 4.13e7T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.21635936526294470118110433808, −8.964951284949996475433056360474, −8.128412003468923133807757991013, −6.56691315593058990094368663923, −5.90199772295635006821270743922, −4.82094496262631651118226866602, −4.10721213241235676007076475337, −2.83374394224678475896757310621, −0.933840919838091740320369089580, 0, 0.933840919838091740320369089580, 2.83374394224678475896757310621, 4.10721213241235676007076475337, 4.82094496262631651118226866602, 5.90199772295635006821270743922, 6.56691315593058990094368663923, 8.128412003468923133807757991013, 8.964951284949996475433056360474, 10.21635936526294470118110433808

Graph of the $Z$-function along the critical line