Properties

Label 245.10.a.n.1.11
Level $245$
Weight $10$
Character 245.1
Self dual yes
Analytic conductor $126.184$
Analytic rank $1$
Dimension $18$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,10,Mod(1,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 245.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(126.183779860\)
Analytic rank: \(1\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 6 x^{17} - 6671 x^{16} + 28472 x^{15} + 18323094 x^{14} - 49525664 x^{13} + \cdots + 24\!\cdots\!76 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{18}\cdot 3^{4}\cdot 5^{4}\cdot 7^{16} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(-11.6331\) of defining polynomial
Character \(\chi\) \(=\) 245.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+14.2189 q^{2} -145.482 q^{3} -309.823 q^{4} -625.000 q^{5} -2068.59 q^{6} -11685.4 q^{8} +1481.93 q^{9} -8886.81 q^{10} +3047.19 q^{11} +45073.6 q^{12} +67030.4 q^{13} +90926.1 q^{15} -7524.42 q^{16} -262538. q^{17} +21071.4 q^{18} -51205.4 q^{19} +193639. q^{20} +43327.7 q^{22} -829244. q^{23} +1.70001e6 q^{24} +390625. q^{25} +953099. q^{26} +2.64792e6 q^{27} +7.28765e6 q^{29} +1.29287e6 q^{30} -235560. q^{31} +5.87594e6 q^{32} -443310. q^{33} -3.73300e6 q^{34} -459136. q^{36} +1.69409e7 q^{37} -728084. q^{38} -9.75170e6 q^{39} +7.30339e6 q^{40} -4.53695e6 q^{41} +3.23590e6 q^{43} -944089. q^{44} -926206. q^{45} -1.17909e7 q^{46} +6.45012e6 q^{47} +1.09467e6 q^{48} +5.55426e6 q^{50} +3.81945e7 q^{51} -2.07676e7 q^{52} +1.88525e7 q^{53} +3.76505e7 q^{54} -1.90449e6 q^{55} +7.44944e6 q^{57} +1.03622e8 q^{58} -1.73163e8 q^{59} -2.81710e7 q^{60} +9.62902e7 q^{61} -3.34940e6 q^{62} +8.74020e7 q^{64} -4.18940e7 q^{65} -6.30338e6 q^{66} -830384. q^{67} +8.13402e7 q^{68} +1.20640e8 q^{69} +9.97328e7 q^{71} -1.73170e7 q^{72} -2.22774e8 q^{73} +2.40880e8 q^{74} -5.68288e7 q^{75} +1.58646e7 q^{76} -1.38658e8 q^{78} -1.53648e7 q^{79} +4.70276e6 q^{80} -4.14393e8 q^{81} -6.45105e7 q^{82} -2.19006e8 q^{83} +1.64086e8 q^{85} +4.60109e7 q^{86} -1.06022e9 q^{87} -3.56077e7 q^{88} -7.71811e6 q^{89} -1.31696e7 q^{90} +2.56919e8 q^{92} +3.42697e7 q^{93} +9.17137e7 q^{94} +3.20034e7 q^{95} -8.54842e8 q^{96} -4.13160e7 q^{97} +4.51572e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 66 q^{2} - 112 q^{3} + 4438 q^{4} - 11250 q^{5} - 5184 q^{6} + 58542 q^{8} + 117250 q^{9} - 41250 q^{10} - 50448 q^{11} + 51200 q^{12} - 265416 q^{13} + 70000 q^{15} + 275354 q^{16} - 742108 q^{17}+ \cdots - 3327698948 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 14.2189 0.628392 0.314196 0.949358i \(-0.398265\pi\)
0.314196 + 0.949358i \(0.398265\pi\)
\(3\) −145.482 −1.03696 −0.518481 0.855089i \(-0.673502\pi\)
−0.518481 + 0.855089i \(0.673502\pi\)
\(4\) −309.823 −0.605123
\(5\) −625.000 −0.447214
\(6\) −2068.59 −0.651619
\(7\) 0 0
\(8\) −11685.4 −1.00865
\(9\) 1481.93 0.0752898
\(10\) −8886.81 −0.281026
\(11\) 3047.19 0.0627527 0.0313763 0.999508i \(-0.490011\pi\)
0.0313763 + 0.999508i \(0.490011\pi\)
\(12\) 45073.6 0.627489
\(13\) 67030.4 0.650919 0.325460 0.945556i \(-0.394481\pi\)
0.325460 + 0.945556i \(0.394481\pi\)
\(14\) 0 0
\(15\) 90926.1 0.463743
\(16\) −7524.42 −0.0287034
\(17\) −262538. −0.762380 −0.381190 0.924497i \(-0.624486\pi\)
−0.381190 + 0.924497i \(0.624486\pi\)
\(18\) 21071.4 0.0473116
\(19\) −51205.4 −0.0901414 −0.0450707 0.998984i \(-0.514351\pi\)
−0.0450707 + 0.998984i \(0.514351\pi\)
\(20\) 193639. 0.270619
\(21\) 0 0
\(22\) 43327.7 0.0394333
\(23\) −829244. −0.617884 −0.308942 0.951081i \(-0.599975\pi\)
−0.308942 + 0.951081i \(0.599975\pi\)
\(24\) 1.70001e6 1.04593
\(25\) 390625. 0.200000
\(26\) 953099. 0.409033
\(27\) 2.64792e6 0.958889
\(28\) 0 0
\(29\) 7.28765e6 1.91336 0.956680 0.291143i \(-0.0940356\pi\)
0.956680 + 0.291143i \(0.0940356\pi\)
\(30\) 1.29287e6 0.291413
\(31\) −235560. −0.0458114 −0.0229057 0.999738i \(-0.507292\pi\)
−0.0229057 + 0.999738i \(0.507292\pi\)
\(32\) 5.87594e6 0.990610
\(33\) −443310. −0.0650721
\(34\) −3.73300e6 −0.479074
\(35\) 0 0
\(36\) −459136. −0.0455596
\(37\) 1.69409e7 1.48603 0.743015 0.669275i \(-0.233395\pi\)
0.743015 + 0.669275i \(0.233395\pi\)
\(38\) −728084. −0.0566442
\(39\) −9.75170e6 −0.674978
\(40\) 7.30339e6 0.451081
\(41\) −4.53695e6 −0.250748 −0.125374 0.992110i \(-0.540013\pi\)
−0.125374 + 0.992110i \(0.540013\pi\)
\(42\) 0 0
\(43\) 3.23590e6 0.144340 0.0721700 0.997392i \(-0.477008\pi\)
0.0721700 + 0.997392i \(0.477008\pi\)
\(44\) −944089. −0.0379731
\(45\) −926206. −0.0336706
\(46\) −1.17909e7 −0.388274
\(47\) 6.45012e6 0.192809 0.0964046 0.995342i \(-0.469266\pi\)
0.0964046 + 0.995342i \(0.469266\pi\)
\(48\) 1.09467e6 0.0297643
\(49\) 0 0
\(50\) 5.55426e6 0.125678
\(51\) 3.81945e7 0.790559
\(52\) −2.07676e7 −0.393886
\(53\) 1.88525e7 0.328192 0.164096 0.986444i \(-0.447529\pi\)
0.164096 + 0.986444i \(0.447529\pi\)
\(54\) 3.76505e7 0.602559
\(55\) −1.90449e6 −0.0280638
\(56\) 0 0
\(57\) 7.44944e6 0.0934732
\(58\) 1.03622e8 1.20234
\(59\) −1.73163e8 −1.86046 −0.930229 0.366978i \(-0.880392\pi\)
−0.930229 + 0.366978i \(0.880392\pi\)
\(60\) −2.81710e7 −0.280622
\(61\) 9.62902e7 0.890426 0.445213 0.895425i \(-0.353128\pi\)
0.445213 + 0.895425i \(0.353128\pi\)
\(62\) −3.34940e6 −0.0287875
\(63\) 0 0
\(64\) 8.74020e7 0.651195
\(65\) −4.18940e7 −0.291100
\(66\) −6.30338e6 −0.0408908
\(67\) −830384. −0.00503434 −0.00251717 0.999997i \(-0.500801\pi\)
−0.00251717 + 0.999997i \(0.500801\pi\)
\(68\) 8.13402e7 0.461334
\(69\) 1.20640e8 0.640722
\(70\) 0 0
\(71\) 9.97328e7 0.465774 0.232887 0.972504i \(-0.425183\pi\)
0.232887 + 0.972504i \(0.425183\pi\)
\(72\) −1.73170e7 −0.0759409
\(73\) −2.22774e8 −0.918144 −0.459072 0.888399i \(-0.651818\pi\)
−0.459072 + 0.888399i \(0.651818\pi\)
\(74\) 2.40880e8 0.933810
\(75\) −5.68288e7 −0.207392
\(76\) 1.58646e7 0.0545466
\(77\) 0 0
\(78\) −1.38658e8 −0.424151
\(79\) −1.53648e7 −0.0443817 −0.0221909 0.999754i \(-0.507064\pi\)
−0.0221909 + 0.999754i \(0.507064\pi\)
\(80\) 4.70276e6 0.0128365
\(81\) −4.14393e8 −1.06962
\(82\) −6.45105e7 −0.157568
\(83\) −2.19006e8 −0.506529 −0.253265 0.967397i \(-0.581504\pi\)
−0.253265 + 0.967397i \(0.581504\pi\)
\(84\) 0 0
\(85\) 1.64086e8 0.340947
\(86\) 4.60109e7 0.0907021
\(87\) −1.06022e9 −1.98408
\(88\) −3.56077e7 −0.0632953
\(89\) −7.71811e6 −0.0130393 −0.00651967 0.999979i \(-0.502075\pi\)
−0.00651967 + 0.999979i \(0.502075\pi\)
\(90\) −1.31696e7 −0.0211584
\(91\) 0 0
\(92\) 2.56919e8 0.373896
\(93\) 3.42697e7 0.0475047
\(94\) 9.17137e7 0.121160
\(95\) 3.20034e7 0.0403125
\(96\) −8.54842e8 −1.02722
\(97\) −4.13160e7 −0.0473855 −0.0236928 0.999719i \(-0.507542\pi\)
−0.0236928 + 0.999719i \(0.507542\pi\)
\(98\) 0 0
\(99\) 4.51572e6 0.00472464
\(100\) −1.21025e8 −0.121025
\(101\) 5.26293e8 0.503247 0.251624 0.967825i \(-0.419035\pi\)
0.251624 + 0.967825i \(0.419035\pi\)
\(102\) 5.43083e8 0.496782
\(103\) −1.75013e9 −1.53215 −0.766076 0.642750i \(-0.777793\pi\)
−0.766076 + 0.642750i \(0.777793\pi\)
\(104\) −7.83279e8 −0.656548
\(105\) 0 0
\(106\) 2.68062e8 0.206234
\(107\) 1.65470e9 1.22037 0.610186 0.792258i \(-0.291095\pi\)
0.610186 + 0.792258i \(0.291095\pi\)
\(108\) −8.20387e8 −0.580246
\(109\) −7.40263e8 −0.502304 −0.251152 0.967948i \(-0.580809\pi\)
−0.251152 + 0.967948i \(0.580809\pi\)
\(110\) −2.70798e7 −0.0176351
\(111\) −2.46458e9 −1.54096
\(112\) 0 0
\(113\) 9.31208e8 0.537272 0.268636 0.963242i \(-0.413427\pi\)
0.268636 + 0.963242i \(0.413427\pi\)
\(114\) 1.05923e8 0.0587378
\(115\) 5.18278e8 0.276326
\(116\) −2.25788e9 −1.15782
\(117\) 9.93344e7 0.0490076
\(118\) −2.46218e9 −1.16910
\(119\) 0 0
\(120\) −1.06251e9 −0.467753
\(121\) −2.34866e9 −0.996062
\(122\) 1.36914e9 0.559537
\(123\) 6.60044e8 0.260016
\(124\) 7.29818e7 0.0277215
\(125\) −2.44141e8 −0.0894427
\(126\) 0 0
\(127\) −7.34546e8 −0.250555 −0.125277 0.992122i \(-0.539982\pi\)
−0.125277 + 0.992122i \(0.539982\pi\)
\(128\) −1.76572e9 −0.581404
\(129\) −4.70764e8 −0.149675
\(130\) −5.95687e8 −0.182925
\(131\) −2.85858e8 −0.0848065 −0.0424032 0.999101i \(-0.513501\pi\)
−0.0424032 + 0.999101i \(0.513501\pi\)
\(132\) 1.37348e8 0.0393766
\(133\) 0 0
\(134\) −1.18071e7 −0.00316354
\(135\) −1.65495e9 −0.428828
\(136\) 3.06786e9 0.768973
\(137\) −5.84226e9 −1.41690 −0.708449 0.705762i \(-0.750605\pi\)
−0.708449 + 0.705762i \(0.750605\pi\)
\(138\) 1.71537e9 0.402625
\(139\) −1.69854e9 −0.385930 −0.192965 0.981206i \(-0.561810\pi\)
−0.192965 + 0.981206i \(0.561810\pi\)
\(140\) 0 0
\(141\) −9.38375e8 −0.199936
\(142\) 1.41809e9 0.292689
\(143\) 2.04254e8 0.0408469
\(144\) −1.11507e7 −0.00216107
\(145\) −4.55478e9 −0.855680
\(146\) −3.16760e9 −0.576955
\(147\) 0 0
\(148\) −5.24867e9 −0.899231
\(149\) 1.01068e10 1.67986 0.839931 0.542693i \(-0.182595\pi\)
0.839931 + 0.542693i \(0.182595\pi\)
\(150\) −8.08043e8 −0.130324
\(151\) −5.93766e9 −0.929435 −0.464717 0.885459i \(-0.653844\pi\)
−0.464717 + 0.885459i \(0.653844\pi\)
\(152\) 5.98356e8 0.0909209
\(153\) −3.89063e8 −0.0573995
\(154\) 0 0
\(155\) 1.47225e8 0.0204875
\(156\) 3.02130e9 0.408445
\(157\) −1.12508e9 −0.147786 −0.0738932 0.997266i \(-0.523542\pi\)
−0.0738932 + 0.997266i \(0.523542\pi\)
\(158\) −2.18470e8 −0.0278891
\(159\) −2.74270e9 −0.340323
\(160\) −3.67247e9 −0.443014
\(161\) 0 0
\(162\) −5.89221e9 −0.672142
\(163\) 1.08202e10 1.20058 0.600289 0.799783i \(-0.295052\pi\)
0.600289 + 0.799783i \(0.295052\pi\)
\(164\) 1.40565e9 0.151733
\(165\) 2.77069e8 0.0291011
\(166\) −3.11402e9 −0.318299
\(167\) 2.15266e9 0.214166 0.107083 0.994250i \(-0.465849\pi\)
0.107083 + 0.994250i \(0.465849\pi\)
\(168\) 0 0
\(169\) −6.11142e9 −0.576304
\(170\) 2.33312e9 0.214248
\(171\) −7.58828e7 −0.00678673
\(172\) −1.00255e9 −0.0873434
\(173\) −1.33205e10 −1.13061 −0.565304 0.824883i \(-0.691241\pi\)
−0.565304 + 0.824883i \(0.691241\pi\)
\(174\) −1.50752e10 −1.24678
\(175\) 0 0
\(176\) −2.29283e7 −0.00180121
\(177\) 2.51920e10 1.92922
\(178\) −1.09743e8 −0.00819383
\(179\) −1.87917e9 −0.136813 −0.0684063 0.997658i \(-0.521791\pi\)
−0.0684063 + 0.997658i \(0.521791\pi\)
\(180\) 2.86960e8 0.0203749
\(181\) −1.86256e9 −0.128990 −0.0644950 0.997918i \(-0.520544\pi\)
−0.0644950 + 0.997918i \(0.520544\pi\)
\(182\) 0 0
\(183\) −1.40085e10 −0.923337
\(184\) 9.69006e9 0.623227
\(185\) −1.05880e10 −0.664573
\(186\) 4.87277e8 0.0298516
\(187\) −8.00002e8 −0.0478414
\(188\) −1.99840e9 −0.116673
\(189\) 0 0
\(190\) 4.55052e8 0.0253320
\(191\) 2.95507e10 1.60664 0.803319 0.595548i \(-0.203065\pi\)
0.803319 + 0.595548i \(0.203065\pi\)
\(192\) −1.27154e10 −0.675265
\(193\) 2.56834e10 1.33243 0.666216 0.745759i \(-0.267913\pi\)
0.666216 + 0.745759i \(0.267913\pi\)
\(194\) −5.87469e8 −0.0297767
\(195\) 6.09481e9 0.301859
\(196\) 0 0
\(197\) −2.49541e10 −1.18044 −0.590221 0.807242i \(-0.700959\pi\)
−0.590221 + 0.807242i \(0.700959\pi\)
\(198\) 6.42086e7 0.00296893
\(199\) 1.43726e10 0.649677 0.324839 0.945769i \(-0.394690\pi\)
0.324839 + 0.945769i \(0.394690\pi\)
\(200\) −4.56462e9 −0.201729
\(201\) 1.20806e8 0.00522041
\(202\) 7.48331e9 0.316237
\(203\) 0 0
\(204\) −1.18335e10 −0.478386
\(205\) 2.83560e9 0.112138
\(206\) −2.48849e10 −0.962792
\(207\) −1.22888e9 −0.0465204
\(208\) −5.04365e8 −0.0186836
\(209\) −1.56032e8 −0.00565661
\(210\) 0 0
\(211\) 1.40852e10 0.489208 0.244604 0.969623i \(-0.421342\pi\)
0.244604 + 0.969623i \(0.421342\pi\)
\(212\) −5.84095e9 −0.198597
\(213\) −1.45093e10 −0.482990
\(214\) 2.35280e10 0.766872
\(215\) −2.02244e9 −0.0645508
\(216\) −3.09421e10 −0.967181
\(217\) 0 0
\(218\) −1.05257e10 −0.315644
\(219\) 3.24095e10 0.952081
\(220\) 5.90056e8 0.0169821
\(221\) −1.75980e10 −0.496248
\(222\) −3.50437e10 −0.968325
\(223\) −6.09969e10 −1.65172 −0.825859 0.563877i \(-0.809309\pi\)
−0.825859 + 0.563877i \(0.809309\pi\)
\(224\) 0 0
\(225\) 5.78879e8 0.0150580
\(226\) 1.32408e10 0.337617
\(227\) 7.12988e10 1.78224 0.891119 0.453769i \(-0.149921\pi\)
0.891119 + 0.453769i \(0.149921\pi\)
\(228\) −2.30801e9 −0.0565628
\(229\) −2.21068e10 −0.531210 −0.265605 0.964082i \(-0.585572\pi\)
−0.265605 + 0.964082i \(0.585572\pi\)
\(230\) 7.36934e9 0.173641
\(231\) 0 0
\(232\) −8.51592e10 −1.92990
\(233\) 4.27030e10 0.949198 0.474599 0.880202i \(-0.342593\pi\)
0.474599 + 0.880202i \(0.342593\pi\)
\(234\) 1.41243e9 0.0307960
\(235\) −4.03133e9 −0.0862269
\(236\) 5.36497e10 1.12581
\(237\) 2.23529e9 0.0460222
\(238\) 0 0
\(239\) 2.61844e10 0.519101 0.259551 0.965730i \(-0.416426\pi\)
0.259551 + 0.965730i \(0.416426\pi\)
\(240\) −6.84166e8 −0.0133110
\(241\) −7.37691e10 −1.40863 −0.704317 0.709886i \(-0.748746\pi\)
−0.704317 + 0.709886i \(0.748746\pi\)
\(242\) −3.33954e10 −0.625918
\(243\) 8.16757e9 0.150267
\(244\) −2.98329e10 −0.538817
\(245\) 0 0
\(246\) 9.38509e9 0.163392
\(247\) −3.43232e9 −0.0586747
\(248\) 2.75262e9 0.0462076
\(249\) 3.18614e10 0.525251
\(250\) −3.47141e9 −0.0562051
\(251\) −5.66878e10 −0.901484 −0.450742 0.892654i \(-0.648841\pi\)
−0.450742 + 0.892654i \(0.648841\pi\)
\(252\) 0 0
\(253\) −2.52686e9 −0.0387739
\(254\) −1.04444e10 −0.157447
\(255\) −2.38715e10 −0.353549
\(256\) −6.98565e10 −1.01655
\(257\) −6.06404e10 −0.867088 −0.433544 0.901132i \(-0.642737\pi\)
−0.433544 + 0.901132i \(0.642737\pi\)
\(258\) −6.69374e9 −0.0940547
\(259\) 0 0
\(260\) 1.29797e10 0.176151
\(261\) 1.07998e10 0.144056
\(262\) −4.06458e9 −0.0532918
\(263\) −1.39622e11 −1.79951 −0.899754 0.436397i \(-0.856254\pi\)
−0.899754 + 0.436397i \(0.856254\pi\)
\(264\) 5.18026e9 0.0656348
\(265\) −1.17828e10 −0.146772
\(266\) 0 0
\(267\) 1.12284e9 0.0135213
\(268\) 2.57272e8 0.00304639
\(269\) 1.55947e11 1.81590 0.907950 0.419079i \(-0.137647\pi\)
0.907950 + 0.419079i \(0.137647\pi\)
\(270\) −2.35316e10 −0.269472
\(271\) −1.37528e11 −1.54892 −0.774458 0.632625i \(-0.781978\pi\)
−0.774458 + 0.632625i \(0.781978\pi\)
\(272\) 1.97544e9 0.0218829
\(273\) 0 0
\(274\) −8.30705e10 −0.890368
\(275\) 1.19031e9 0.0125505
\(276\) −3.73770e10 −0.387716
\(277\) −7.55822e10 −0.771366 −0.385683 0.922631i \(-0.626034\pi\)
−0.385683 + 0.922631i \(0.626034\pi\)
\(278\) −2.41513e10 −0.242516
\(279\) −3.49083e8 −0.00344913
\(280\) 0 0
\(281\) 1.70202e11 1.62850 0.814249 0.580515i \(-0.197149\pi\)
0.814249 + 0.580515i \(0.197149\pi\)
\(282\) −1.33427e10 −0.125638
\(283\) 9.81251e10 0.909371 0.454686 0.890652i \(-0.349752\pi\)
0.454686 + 0.890652i \(0.349752\pi\)
\(284\) −3.08995e10 −0.281851
\(285\) −4.65590e9 −0.0418025
\(286\) 2.90427e9 0.0256679
\(287\) 0 0
\(288\) 8.70774e9 0.0745829
\(289\) −4.96618e10 −0.418776
\(290\) −6.47640e10 −0.537703
\(291\) 6.01073e9 0.0491370
\(292\) 6.90204e10 0.555590
\(293\) −1.77981e10 −0.141082 −0.0705408 0.997509i \(-0.522472\pi\)
−0.0705408 + 0.997509i \(0.522472\pi\)
\(294\) 0 0
\(295\) 1.08227e11 0.832023
\(296\) −1.97961e11 −1.49888
\(297\) 8.06872e9 0.0601729
\(298\) 1.43707e11 1.05561
\(299\) −5.55846e10 −0.402193
\(300\) 1.76069e10 0.125498
\(301\) 0 0
\(302\) −8.44270e10 −0.584050
\(303\) −7.65660e10 −0.521848
\(304\) 3.85290e8 0.00258736
\(305\) −6.01813e10 −0.398210
\(306\) −5.53204e9 −0.0360694
\(307\) 2.52234e11 1.62062 0.810308 0.586004i \(-0.199300\pi\)
0.810308 + 0.586004i \(0.199300\pi\)
\(308\) 0 0
\(309\) 2.54611e11 1.58878
\(310\) 2.09338e9 0.0128742
\(311\) −1.71829e11 −1.04154 −0.520770 0.853697i \(-0.674355\pi\)
−0.520770 + 0.853697i \(0.674355\pi\)
\(312\) 1.13953e11 0.680815
\(313\) 2.71094e11 1.59651 0.798253 0.602322i \(-0.205758\pi\)
0.798253 + 0.602322i \(0.205758\pi\)
\(314\) −1.59974e10 −0.0928678
\(315\) 0 0
\(316\) 4.76036e9 0.0268564
\(317\) 4.34647e10 0.241752 0.120876 0.992668i \(-0.461430\pi\)
0.120876 + 0.992668i \(0.461430\pi\)
\(318\) −3.89982e10 −0.213856
\(319\) 2.22068e10 0.120068
\(320\) −5.46262e10 −0.291223
\(321\) −2.40728e11 −1.26548
\(322\) 0 0
\(323\) 1.34433e10 0.0687220
\(324\) 1.28389e11 0.647252
\(325\) 2.61838e10 0.130184
\(326\) 1.53851e11 0.754434
\(327\) 1.07695e11 0.520870
\(328\) 5.30162e10 0.252916
\(329\) 0 0
\(330\) 3.93961e9 0.0182869
\(331\) −3.32864e11 −1.52420 −0.762098 0.647461i \(-0.775831\pi\)
−0.762098 + 0.647461i \(0.775831\pi\)
\(332\) 6.78531e10 0.306512
\(333\) 2.51052e10 0.111883
\(334\) 3.06084e10 0.134580
\(335\) 5.18990e8 0.00225142
\(336\) 0 0
\(337\) −2.14358e11 −0.905327 −0.452663 0.891681i \(-0.649526\pi\)
−0.452663 + 0.891681i \(0.649526\pi\)
\(338\) −8.68977e10 −0.362145
\(339\) −1.35474e11 −0.557130
\(340\) −5.08377e10 −0.206315
\(341\) −7.17795e8 −0.00287479
\(342\) −1.07897e9 −0.00426473
\(343\) 0 0
\(344\) −3.78128e10 −0.145588
\(345\) −7.53999e10 −0.286540
\(346\) −1.89402e11 −0.710466
\(347\) 3.24293e11 1.20075 0.600377 0.799717i \(-0.295017\pi\)
0.600377 + 0.799717i \(0.295017\pi\)
\(348\) 3.28480e11 1.20061
\(349\) 3.22203e11 1.16256 0.581279 0.813704i \(-0.302552\pi\)
0.581279 + 0.813704i \(0.302552\pi\)
\(350\) 0 0
\(351\) 1.77491e11 0.624159
\(352\) 1.79051e10 0.0621634
\(353\) −2.14305e11 −0.734591 −0.367296 0.930104i \(-0.619716\pi\)
−0.367296 + 0.930104i \(0.619716\pi\)
\(354\) 3.58202e11 1.21231
\(355\) −6.23330e10 −0.208301
\(356\) 2.39125e9 0.00789041
\(357\) 0 0
\(358\) −2.67197e10 −0.0859721
\(359\) 2.99291e11 0.950973 0.475487 0.879723i \(-0.342272\pi\)
0.475487 + 0.879723i \(0.342272\pi\)
\(360\) 1.08231e10 0.0339618
\(361\) −3.20066e11 −0.991875
\(362\) −2.64835e10 −0.0810563
\(363\) 3.41687e11 1.03288
\(364\) 0 0
\(365\) 1.39234e11 0.410607
\(366\) −1.99185e11 −0.580218
\(367\) 2.26354e11 0.651313 0.325657 0.945488i \(-0.394415\pi\)
0.325657 + 0.945488i \(0.394415\pi\)
\(368\) 6.23958e9 0.0177354
\(369\) −6.72345e9 −0.0188788
\(370\) −1.50550e11 −0.417613
\(371\) 0 0
\(372\) −1.06175e10 −0.0287462
\(373\) 1.49101e11 0.398834 0.199417 0.979915i \(-0.436095\pi\)
0.199417 + 0.979915i \(0.436095\pi\)
\(374\) −1.13752e10 −0.0300632
\(375\) 3.55180e10 0.0927487
\(376\) −7.53724e10 −0.194476
\(377\) 4.88494e11 1.24544
\(378\) 0 0
\(379\) −1.37752e8 −0.000342943 0 −0.000171472 1.00000i \(-0.500055\pi\)
−0.000171472 1.00000i \(0.500055\pi\)
\(380\) −9.91537e9 −0.0243940
\(381\) 1.06863e11 0.259816
\(382\) 4.20179e11 1.00960
\(383\) 1.86906e11 0.443842 0.221921 0.975065i \(-0.428767\pi\)
0.221921 + 0.975065i \(0.428767\pi\)
\(384\) 2.56881e11 0.602894
\(385\) 0 0
\(386\) 3.65190e11 0.837290
\(387\) 4.79537e9 0.0108673
\(388\) 1.28007e10 0.0286741
\(389\) 3.59779e11 0.796640 0.398320 0.917246i \(-0.369593\pi\)
0.398320 + 0.917246i \(0.369593\pi\)
\(390\) 8.66615e10 0.189686
\(391\) 2.17708e11 0.471063
\(392\) 0 0
\(393\) 4.15871e10 0.0879411
\(394\) −3.54821e11 −0.741781
\(395\) 9.60298e9 0.0198481
\(396\) −1.39907e9 −0.00285899
\(397\) 6.18525e11 1.24968 0.624842 0.780751i \(-0.285163\pi\)
0.624842 + 0.780751i \(0.285163\pi\)
\(398\) 2.04363e11 0.408252
\(399\) 0 0
\(400\) −2.93923e9 −0.00574067
\(401\) −7.66178e11 −1.47972 −0.739861 0.672760i \(-0.765109\pi\)
−0.739861 + 0.672760i \(0.765109\pi\)
\(402\) 1.71772e9 0.00328047
\(403\) −1.57897e10 −0.0298195
\(404\) −1.63058e11 −0.304526
\(405\) 2.58996e11 0.478349
\(406\) 0 0
\(407\) 5.16220e10 0.0932524
\(408\) −4.46318e11 −0.797396
\(409\) 9.59126e11 1.69481 0.847404 0.530948i \(-0.178164\pi\)
0.847404 + 0.530948i \(0.178164\pi\)
\(410\) 4.03190e10 0.0704665
\(411\) 8.49942e11 1.46927
\(412\) 5.42229e11 0.927140
\(413\) 0 0
\(414\) −1.74733e10 −0.0292331
\(415\) 1.36879e11 0.226527
\(416\) 3.93867e11 0.644807
\(417\) 2.47106e11 0.400195
\(418\) −2.21861e9 −0.00355457
\(419\) 1.06964e12 1.69541 0.847707 0.530464i \(-0.177982\pi\)
0.847707 + 0.530464i \(0.177982\pi\)
\(420\) 0 0
\(421\) 1.13045e10 0.0175380 0.00876900 0.999962i \(-0.497209\pi\)
0.00876900 + 0.999962i \(0.497209\pi\)
\(422\) 2.00277e11 0.307415
\(423\) 9.55863e9 0.0145166
\(424\) −2.20300e11 −0.331030
\(425\) −1.02554e11 −0.152476
\(426\) −2.06306e11 −0.303507
\(427\) 0 0
\(428\) −5.12664e11 −0.738475
\(429\) −2.97153e10 −0.0423567
\(430\) −2.87568e10 −0.0405632
\(431\) −1.07684e12 −1.50315 −0.751576 0.659647i \(-0.770706\pi\)
−0.751576 + 0.659647i \(0.770706\pi\)
\(432\) −1.99241e10 −0.0275234
\(433\) −3.64149e11 −0.497832 −0.248916 0.968525i \(-0.580074\pi\)
−0.248916 + 0.968525i \(0.580074\pi\)
\(434\) 0 0
\(435\) 6.62637e11 0.887308
\(436\) 2.29350e11 0.303956
\(437\) 4.24617e10 0.0556969
\(438\) 4.60827e11 0.598280
\(439\) −6.94204e11 −0.892066 −0.446033 0.895017i \(-0.647164\pi\)
−0.446033 + 0.895017i \(0.647164\pi\)
\(440\) 2.22548e10 0.0283065
\(441\) 0 0
\(442\) −2.50225e11 −0.311838
\(443\) −5.15843e11 −0.636357 −0.318178 0.948031i \(-0.603071\pi\)
−0.318178 + 0.948031i \(0.603071\pi\)
\(444\) 7.63585e11 0.932468
\(445\) 4.82382e9 0.00583137
\(446\) −8.67309e11 −1.03793
\(447\) −1.47035e12 −1.74195
\(448\) 0 0
\(449\) 3.19581e11 0.371084 0.185542 0.982636i \(-0.440596\pi\)
0.185542 + 0.982636i \(0.440596\pi\)
\(450\) 8.23102e9 0.00946231
\(451\) −1.38249e10 −0.0157351
\(452\) −2.88510e11 −0.325115
\(453\) 8.63821e11 0.963788
\(454\) 1.01379e12 1.11995
\(455\) 0 0
\(456\) −8.70499e10 −0.0942815
\(457\) −1.15689e12 −1.24071 −0.620354 0.784322i \(-0.713011\pi\)
−0.620354 + 0.784322i \(0.713011\pi\)
\(458\) −3.14334e11 −0.333808
\(459\) −6.95180e11 −0.731038
\(460\) −1.60574e11 −0.167211
\(461\) −3.60114e11 −0.371352 −0.185676 0.982611i \(-0.559447\pi\)
−0.185676 + 0.982611i \(0.559447\pi\)
\(462\) 0 0
\(463\) −1.37722e12 −1.39280 −0.696402 0.717652i \(-0.745217\pi\)
−0.696402 + 0.717652i \(0.745217\pi\)
\(464\) −5.48353e10 −0.0549199
\(465\) −2.14185e10 −0.0212447
\(466\) 6.07189e11 0.596469
\(467\) 7.87091e10 0.0765772 0.0382886 0.999267i \(-0.487809\pi\)
0.0382886 + 0.999267i \(0.487809\pi\)
\(468\) −3.07761e10 −0.0296556
\(469\) 0 0
\(470\) −5.73210e10 −0.0541843
\(471\) 1.63678e11 0.153249
\(472\) 2.02348e12 1.87655
\(473\) 9.86039e9 0.00905772
\(474\) 3.17834e10 0.0289200
\(475\) −2.00021e10 −0.0180283
\(476\) 0 0
\(477\) 2.79381e10 0.0247095
\(478\) 3.72313e11 0.326199
\(479\) −1.03512e12 −0.898426 −0.449213 0.893425i \(-0.648296\pi\)
−0.449213 + 0.893425i \(0.648296\pi\)
\(480\) 5.34277e11 0.459389
\(481\) 1.13555e12 0.967285
\(482\) −1.04892e12 −0.885175
\(483\) 0 0
\(484\) 7.27669e11 0.602740
\(485\) 2.58225e10 0.0211915
\(486\) 1.16134e11 0.0944268
\(487\) −4.54585e11 −0.366214 −0.183107 0.983093i \(-0.558615\pi\)
−0.183107 + 0.983093i \(0.558615\pi\)
\(488\) −1.12519e12 −0.898125
\(489\) −1.57414e12 −1.24495
\(490\) 0 0
\(491\) −3.19689e11 −0.248234 −0.124117 0.992268i \(-0.539610\pi\)
−0.124117 + 0.992268i \(0.539610\pi\)
\(492\) −2.04497e11 −0.157341
\(493\) −1.91328e12 −1.45871
\(494\) −4.88038e10 −0.0368708
\(495\) −2.82232e9 −0.00211292
\(496\) 1.77245e9 0.00131494
\(497\) 0 0
\(498\) 4.53033e11 0.330064
\(499\) 1.53580e11 0.110887 0.0554435 0.998462i \(-0.482343\pi\)
0.0554435 + 0.998462i \(0.482343\pi\)
\(500\) 7.56404e10 0.0541238
\(501\) −3.13172e11 −0.222082
\(502\) −8.06038e11 −0.566486
\(503\) −1.03951e12 −0.724056 −0.362028 0.932167i \(-0.617915\pi\)
−0.362028 + 0.932167i \(0.617915\pi\)
\(504\) 0 0
\(505\) −3.28933e11 −0.225059
\(506\) −3.59292e10 −0.0243652
\(507\) 8.89100e11 0.597606
\(508\) 2.27579e11 0.151616
\(509\) −1.99303e12 −1.31608 −0.658042 0.752981i \(-0.728615\pi\)
−0.658042 + 0.752981i \(0.728615\pi\)
\(510\) −3.39427e11 −0.222167
\(511\) 0 0
\(512\) −8.92311e10 −0.0573854
\(513\) −1.35588e11 −0.0864356
\(514\) −8.62240e11 −0.544872
\(515\) 1.09383e12 0.685199
\(516\) 1.45853e11 0.0905718
\(517\) 1.96547e10 0.0120993
\(518\) 0 0
\(519\) 1.93789e12 1.17240
\(520\) 4.89549e11 0.293617
\(521\) −1.23517e12 −0.734444 −0.367222 0.930133i \(-0.619691\pi\)
−0.367222 + 0.930133i \(0.619691\pi\)
\(522\) 1.53561e11 0.0905240
\(523\) 1.36296e12 0.796572 0.398286 0.917261i \(-0.369605\pi\)
0.398286 + 0.917261i \(0.369605\pi\)
\(524\) 8.85653e10 0.0513183
\(525\) 0 0
\(526\) −1.98528e12 −1.13080
\(527\) 6.18434e10 0.0349257
\(528\) 3.33565e9 0.00186779
\(529\) −1.11351e12 −0.618219
\(530\) −1.67539e11 −0.0922305
\(531\) −2.56615e11 −0.140074
\(532\) 0 0
\(533\) −3.04114e11 −0.163216
\(534\) 1.59656e10 0.00849669
\(535\) −1.03419e12 −0.545767
\(536\) 9.70338e9 0.00507787
\(537\) 2.73384e11 0.141870
\(538\) 2.21739e12 1.14110
\(539\) 0 0
\(540\) 5.12742e11 0.259494
\(541\) 1.23521e12 0.619944 0.309972 0.950746i \(-0.399680\pi\)
0.309972 + 0.950746i \(0.399680\pi\)
\(542\) −1.95549e12 −0.973328
\(543\) 2.70968e11 0.133758
\(544\) −1.54266e12 −0.755222
\(545\) 4.62664e11 0.224637
\(546\) 0 0
\(547\) 3.11783e12 1.48905 0.744525 0.667594i \(-0.232676\pi\)
0.744525 + 0.667594i \(0.232676\pi\)
\(548\) 1.81007e12 0.857397
\(549\) 1.42695e11 0.0670400
\(550\) 1.69249e10 0.00788666
\(551\) −3.73167e11 −0.172473
\(552\) −1.40973e12 −0.646263
\(553\) 0 0
\(554\) −1.07470e12 −0.484721
\(555\) 1.54037e12 0.689137
\(556\) 5.26246e11 0.233535
\(557\) −3.07379e12 −1.35309 −0.676544 0.736402i \(-0.736523\pi\)
−0.676544 + 0.736402i \(0.736523\pi\)
\(558\) −4.96358e9 −0.00216741
\(559\) 2.16904e11 0.0939536
\(560\) 0 0
\(561\) 1.16386e11 0.0496097
\(562\) 2.42009e12 1.02334
\(563\) −4.57752e12 −1.92018 −0.960092 0.279685i \(-0.909770\pi\)
−0.960092 + 0.279685i \(0.909770\pi\)
\(564\) 2.90730e11 0.120986
\(565\) −5.82005e11 −0.240275
\(566\) 1.39523e12 0.571442
\(567\) 0 0
\(568\) −1.16542e12 −0.469802
\(569\) 4.09281e12 1.63688 0.818439 0.574593i \(-0.194840\pi\)
0.818439 + 0.574593i \(0.194840\pi\)
\(570\) −6.62018e10 −0.0262684
\(571\) 6.05625e11 0.238419 0.119210 0.992869i \(-0.461964\pi\)
0.119210 + 0.992869i \(0.461964\pi\)
\(572\) −6.32827e10 −0.0247174
\(573\) −4.29909e12 −1.66602
\(574\) 0 0
\(575\) −3.23923e11 −0.123577
\(576\) 1.29524e11 0.0490284
\(577\) −3.79815e12 −1.42653 −0.713264 0.700895i \(-0.752784\pi\)
−0.713264 + 0.700895i \(0.752784\pi\)
\(578\) −7.06135e11 −0.263156
\(579\) −3.73647e12 −1.38168
\(580\) 1.41118e12 0.517792
\(581\) 0 0
\(582\) 8.54659e10 0.0308773
\(583\) 5.74472e10 0.0205949
\(584\) 2.60320e12 0.926084
\(585\) −6.20840e10 −0.0219169
\(586\) −2.53070e11 −0.0886546
\(587\) −2.98554e12 −1.03789 −0.518946 0.854807i \(-0.673675\pi\)
−0.518946 + 0.854807i \(0.673675\pi\)
\(588\) 0 0
\(589\) 1.20619e10 0.00412950
\(590\) 1.53886e12 0.522837
\(591\) 3.63037e12 1.22407
\(592\) −1.27470e11 −0.0426541
\(593\) 3.67544e12 1.22057 0.610285 0.792182i \(-0.291055\pi\)
0.610285 + 0.792182i \(0.291055\pi\)
\(594\) 1.14728e11 0.0378122
\(595\) 0 0
\(596\) −3.13130e12 −1.01652
\(597\) −2.09096e12 −0.673691
\(598\) −7.90352e11 −0.252735
\(599\) −3.77319e12 −1.19753 −0.598767 0.800923i \(-0.704342\pi\)
−0.598767 + 0.800923i \(0.704342\pi\)
\(600\) 6.64068e11 0.209186
\(601\) −4.65341e12 −1.45491 −0.727455 0.686156i \(-0.759297\pi\)
−0.727455 + 0.686156i \(0.759297\pi\)
\(602\) 0 0
\(603\) −1.23057e9 −0.000379034 0
\(604\) 1.83962e12 0.562422
\(605\) 1.46791e12 0.445453
\(606\) −1.08868e12 −0.327926
\(607\) −1.19001e12 −0.355795 −0.177898 0.984049i \(-0.556930\pi\)
−0.177898 + 0.984049i \(0.556930\pi\)
\(608\) −3.00880e11 −0.0892950
\(609\) 0 0
\(610\) −8.55712e11 −0.250232
\(611\) 4.32355e11 0.125503
\(612\) 1.20541e11 0.0347338
\(613\) −1.22351e12 −0.349974 −0.174987 0.984571i \(-0.555988\pi\)
−0.174987 + 0.984571i \(0.555988\pi\)
\(614\) 3.58648e12 1.01838
\(615\) −4.12527e11 −0.116283
\(616\) 0 0
\(617\) −5.57232e10 −0.0154794 −0.00773968 0.999970i \(-0.502464\pi\)
−0.00773968 + 0.999970i \(0.502464\pi\)
\(618\) 3.62029e12 0.998379
\(619\) −3.96796e12 −1.08632 −0.543162 0.839628i \(-0.682773\pi\)
−0.543162 + 0.839628i \(0.682773\pi\)
\(620\) −4.56137e10 −0.0123974
\(621\) −2.19577e12 −0.592482
\(622\) −2.44323e12 −0.654496
\(623\) 0 0
\(624\) 7.33759e10 0.0193741
\(625\) 1.52588e11 0.0400000
\(626\) 3.85466e12 1.00323
\(627\) 2.26999e10 0.00586569
\(628\) 3.48575e11 0.0894289
\(629\) −4.44762e12 −1.13292
\(630\) 0 0
\(631\) −6.59314e12 −1.65562 −0.827809 0.561011i \(-0.810413\pi\)
−0.827809 + 0.561011i \(0.810413\pi\)
\(632\) 1.79544e11 0.0447655
\(633\) −2.04915e12 −0.507290
\(634\) 6.18019e11 0.151915
\(635\) 4.59091e11 0.112051
\(636\) 8.49751e11 0.205937
\(637\) 0 0
\(638\) 3.15757e11 0.0754501
\(639\) 1.47797e11 0.0350681
\(640\) 1.10358e12 0.260012
\(641\) −2.43610e12 −0.569947 −0.284973 0.958535i \(-0.591985\pi\)
−0.284973 + 0.958535i \(0.591985\pi\)
\(642\) −3.42289e12 −0.795217
\(643\) 4.53115e12 1.04534 0.522672 0.852534i \(-0.324935\pi\)
0.522672 + 0.852534i \(0.324935\pi\)
\(644\) 0 0
\(645\) 2.94227e11 0.0669367
\(646\) 1.91150e11 0.0431844
\(647\) −1.94277e10 −0.00435865 −0.00217932 0.999998i \(-0.500694\pi\)
−0.00217932 + 0.999998i \(0.500694\pi\)
\(648\) 4.84236e12 1.07887
\(649\) −5.27659e11 −0.116749
\(650\) 3.72304e11 0.0818065
\(651\) 0 0
\(652\) −3.35234e12 −0.726497
\(653\) 4.89742e12 1.05404 0.527021 0.849852i \(-0.323309\pi\)
0.527021 + 0.849852i \(0.323309\pi\)
\(654\) 1.53130e12 0.327311
\(655\) 1.78661e11 0.0379266
\(656\) 3.41379e10 0.00719730
\(657\) −3.30135e11 −0.0691269
\(658\) 0 0
\(659\) 1.90161e12 0.392768 0.196384 0.980527i \(-0.437080\pi\)
0.196384 + 0.980527i \(0.437080\pi\)
\(660\) −8.58423e10 −0.0176098
\(661\) 8.99572e12 1.83286 0.916430 0.400196i \(-0.131058\pi\)
0.916430 + 0.400196i \(0.131058\pi\)
\(662\) −4.73296e12 −0.957794
\(663\) 2.56019e12 0.514590
\(664\) 2.55918e12 0.510909
\(665\) 0 0
\(666\) 3.56968e11 0.0703064
\(667\) −6.04324e12 −1.18223
\(668\) −6.66942e11 −0.129597
\(669\) 8.87393e12 1.71277
\(670\) 7.37946e9 0.00141478
\(671\) 2.93414e11 0.0558766
\(672\) 0 0
\(673\) 3.47509e12 0.652977 0.326489 0.945201i \(-0.394135\pi\)
0.326489 + 0.945201i \(0.394135\pi\)
\(674\) −3.04794e12 −0.568901
\(675\) 1.03434e12 0.191778
\(676\) 1.89346e12 0.348735
\(677\) −3.14898e12 −0.576130 −0.288065 0.957611i \(-0.593012\pi\)
−0.288065 + 0.957611i \(0.593012\pi\)
\(678\) −1.92629e12 −0.350096
\(679\) 0 0
\(680\) −1.91742e12 −0.343895
\(681\) −1.03727e13 −1.84811
\(682\) −1.02063e10 −0.00180650
\(683\) −4.88179e12 −0.858392 −0.429196 0.903211i \(-0.641203\pi\)
−0.429196 + 0.903211i \(0.641203\pi\)
\(684\) 2.35102e10 0.00410681
\(685\) 3.65141e12 0.633656
\(686\) 0 0
\(687\) 3.21613e12 0.550844
\(688\) −2.43482e10 −0.00414304
\(689\) 1.26369e12 0.213627
\(690\) −1.07210e12 −0.180059
\(691\) −9.58720e12 −1.59971 −0.799854 0.600195i \(-0.795090\pi\)
−0.799854 + 0.600195i \(0.795090\pi\)
\(692\) 4.12699e12 0.684157
\(693\) 0 0
\(694\) 4.61108e12 0.754545
\(695\) 1.06159e12 0.172593
\(696\) 1.23891e13 2.00124
\(697\) 1.19112e12 0.191165
\(698\) 4.58137e12 0.730543
\(699\) −6.21250e12 −0.984282
\(700\) 0 0
\(701\) −8.76308e12 −1.37065 −0.685324 0.728238i \(-0.740339\pi\)
−0.685324 + 0.728238i \(0.740339\pi\)
\(702\) 2.52373e12 0.392217
\(703\) −8.67463e11 −0.133953
\(704\) 2.66330e11 0.0408642
\(705\) 5.86484e11 0.0894140
\(706\) −3.04718e12 −0.461612
\(707\) 0 0
\(708\) −7.80506e12 −1.16742
\(709\) −7.45035e12 −1.10731 −0.553654 0.832747i \(-0.686767\pi\)
−0.553654 + 0.832747i \(0.686767\pi\)
\(710\) −8.86307e11 −0.130895
\(711\) −2.27695e10 −0.00334149
\(712\) 9.01893e10 0.0131521
\(713\) 1.95337e11 0.0283061
\(714\) 0 0
\(715\) −1.27659e11 −0.0182673
\(716\) 5.82208e11 0.0827885
\(717\) −3.80935e12 −0.538288
\(718\) 4.25558e12 0.597584
\(719\) −1.06434e13 −1.48526 −0.742629 0.669703i \(-0.766421\pi\)
−0.742629 + 0.669703i \(0.766421\pi\)
\(720\) 6.96916e9 0.000966461 0
\(721\) 0 0
\(722\) −4.55098e12 −0.623286
\(723\) 1.07321e13 1.46070
\(724\) 5.77063e11 0.0780548
\(725\) 2.84674e12 0.382672
\(726\) 4.85842e12 0.649053
\(727\) 5.23781e12 0.695417 0.347708 0.937603i \(-0.386960\pi\)
0.347708 + 0.937603i \(0.386960\pi\)
\(728\) 0 0
\(729\) 6.96827e12 0.913800
\(730\) 1.97975e12 0.258022
\(731\) −8.49545e11 −0.110042
\(732\) 4.34014e12 0.558733
\(733\) 2.02400e11 0.0258966 0.0129483 0.999916i \(-0.495878\pi\)
0.0129483 + 0.999916i \(0.495878\pi\)
\(734\) 3.21850e12 0.409280
\(735\) 0 0
\(736\) −4.87259e12 −0.612082
\(737\) −2.53034e9 −0.000315918 0
\(738\) −9.56000e10 −0.0118633
\(739\) −7.60490e12 −0.937980 −0.468990 0.883204i \(-0.655382\pi\)
−0.468990 + 0.883204i \(0.655382\pi\)
\(740\) 3.28042e12 0.402148
\(741\) 4.99339e11 0.0608435
\(742\) 0 0
\(743\) 7.81025e12 0.940189 0.470095 0.882616i \(-0.344220\pi\)
0.470095 + 0.882616i \(0.344220\pi\)
\(744\) −4.00455e11 −0.0479155
\(745\) −6.31672e12 −0.751257
\(746\) 2.12006e12 0.250624
\(747\) −3.24551e11 −0.0381365
\(748\) 2.47859e11 0.0289499
\(749\) 0 0
\(750\) 5.05027e11 0.0582826
\(751\) −1.27518e13 −1.46282 −0.731412 0.681936i \(-0.761138\pi\)
−0.731412 + 0.681936i \(0.761138\pi\)
\(752\) −4.85334e10 −0.00553427
\(753\) 8.24704e12 0.934805
\(754\) 6.94585e12 0.782626
\(755\) 3.71104e12 0.415656
\(756\) 0 0
\(757\) 8.99962e12 0.996076 0.498038 0.867155i \(-0.334054\pi\)
0.498038 + 0.867155i \(0.334054\pi\)
\(758\) −1.95869e9 −0.000215503 0
\(759\) 3.67612e11 0.0402070
\(760\) −3.73972e11 −0.0406610
\(761\) −6.18645e12 −0.668668 −0.334334 0.942455i \(-0.608511\pi\)
−0.334334 + 0.942455i \(0.608511\pi\)
\(762\) 1.51947e12 0.163266
\(763\) 0 0
\(764\) −9.15550e12 −0.972214
\(765\) 2.43164e11 0.0256698
\(766\) 2.65760e12 0.278907
\(767\) −1.16072e13 −1.21101
\(768\) 1.01628e13 1.05412
\(769\) 4.93796e12 0.509189 0.254594 0.967048i \(-0.418058\pi\)
0.254594 + 0.967048i \(0.418058\pi\)
\(770\) 0 0
\(771\) 8.82208e12 0.899138
\(772\) −7.95731e12 −0.806285
\(773\) −1.49263e13 −1.50365 −0.751823 0.659366i \(-0.770825\pi\)
−0.751823 + 0.659366i \(0.770825\pi\)
\(774\) 6.81849e10 0.00682895
\(775\) −9.20156e10 −0.00916228
\(776\) 4.82795e11 0.0477953
\(777\) 0 0
\(778\) 5.11566e12 0.500603
\(779\) 2.32316e11 0.0226027
\(780\) −1.88831e12 −0.182662
\(781\) 3.03905e11 0.0292286
\(782\) 3.09557e12 0.296012
\(783\) 1.92971e13 1.83470
\(784\) 0 0
\(785\) 7.03174e11 0.0660921
\(786\) 5.91322e11 0.0552615
\(787\) −2.09196e12 −0.194387 −0.0971933 0.995266i \(-0.530987\pi\)
−0.0971933 + 0.995266i \(0.530987\pi\)
\(788\) 7.73137e12 0.714313
\(789\) 2.03125e13 1.86602
\(790\) 1.36544e11 0.0124724
\(791\) 0 0
\(792\) −5.27681e10 −0.00476549
\(793\) 6.45437e12 0.579595
\(794\) 8.79475e12 0.785292
\(795\) 1.71419e12 0.152197
\(796\) −4.45297e12 −0.393135
\(797\) −5.38220e12 −0.472495 −0.236248 0.971693i \(-0.575918\pi\)
−0.236248 + 0.971693i \(0.575918\pi\)
\(798\) 0 0
\(799\) −1.69340e12 −0.146994
\(800\) 2.29529e12 0.198122
\(801\) −1.14377e10 −0.000981731 0
\(802\) −1.08942e13 −0.929846
\(803\) −6.78833e11 −0.0576160
\(804\) −3.74284e10 −0.00315899
\(805\) 0 0
\(806\) −2.24512e11 −0.0187384
\(807\) −2.26874e13 −1.88302
\(808\) −6.14995e12 −0.507599
\(809\) 1.22280e13 1.00366 0.501832 0.864965i \(-0.332660\pi\)
0.501832 + 0.864965i \(0.332660\pi\)
\(810\) 3.68263e12 0.300591
\(811\) 1.20686e13 0.979629 0.489815 0.871827i \(-0.337064\pi\)
0.489815 + 0.871827i \(0.337064\pi\)
\(812\) 0 0
\(813\) 2.00078e13 1.60617
\(814\) 7.34008e11 0.0585991
\(815\) −6.76261e12 −0.536915
\(816\) −2.87391e11 −0.0226917
\(817\) −1.65695e11 −0.0130110
\(818\) 1.36377e13 1.06500
\(819\) 0 0
\(820\) −8.78532e11 −0.0678571
\(821\) −3.22207e12 −0.247509 −0.123754 0.992313i \(-0.539493\pi\)
−0.123754 + 0.992313i \(0.539493\pi\)
\(822\) 1.20852e13 0.923277
\(823\) 1.90497e13 1.44740 0.723702 0.690113i \(-0.242439\pi\)
0.723702 + 0.690113i \(0.242439\pi\)
\(824\) 2.04509e13 1.54540
\(825\) −1.73168e11 −0.0130144
\(826\) 0 0
\(827\) 4.51813e12 0.335880 0.167940 0.985797i \(-0.446289\pi\)
0.167940 + 0.985797i \(0.446289\pi\)
\(828\) 3.80736e11 0.0281506
\(829\) −1.54856e13 −1.13876 −0.569380 0.822074i \(-0.692817\pi\)
−0.569380 + 0.822074i \(0.692817\pi\)
\(830\) 1.94626e12 0.142348
\(831\) 1.09958e13 0.799877
\(832\) 5.85859e12 0.423875
\(833\) 0 0
\(834\) 3.51358e12 0.251479
\(835\) −1.34541e12 −0.0957779
\(836\) 4.83424e10 0.00342295
\(837\) −6.23744e11 −0.0439281
\(838\) 1.52092e13 1.06539
\(839\) −1.30090e13 −0.906390 −0.453195 0.891411i \(-0.649716\pi\)
−0.453195 + 0.891411i \(0.649716\pi\)
\(840\) 0 0
\(841\) 3.86027e13 2.66094
\(842\) 1.60737e11 0.0110207
\(843\) −2.47613e13 −1.68869
\(844\) −4.36393e12 −0.296031
\(845\) 3.81964e12 0.257731
\(846\) 1.35913e11 0.00912210
\(847\) 0 0
\(848\) −1.41854e11 −0.00942023
\(849\) −1.42754e13 −0.942983
\(850\) −1.45820e12 −0.0958148
\(851\) −1.40481e13 −0.918195
\(852\) 4.49531e12 0.292268
\(853\) −1.05756e13 −0.683964 −0.341982 0.939706i \(-0.611098\pi\)
−0.341982 + 0.939706i \(0.611098\pi\)
\(854\) 0 0
\(855\) 4.74267e10 0.00303512
\(856\) −1.93358e13 −1.23092
\(857\) 2.80237e13 1.77465 0.887323 0.461149i \(-0.152563\pi\)
0.887323 + 0.461149i \(0.152563\pi\)
\(858\) −4.22518e11 −0.0266166
\(859\) −1.66570e13 −1.04382 −0.521912 0.852999i \(-0.674781\pi\)
−0.521912 + 0.852999i \(0.674781\pi\)
\(860\) 6.26597e11 0.0390612
\(861\) 0 0
\(862\) −1.53115e13 −0.944569
\(863\) 6.58663e12 0.404217 0.202109 0.979363i \(-0.435221\pi\)
0.202109 + 0.979363i \(0.435221\pi\)
\(864\) 1.55590e13 0.949885
\(865\) 8.32529e12 0.505623
\(866\) −5.17779e12 −0.312834
\(867\) 7.22488e12 0.434255
\(868\) 0 0
\(869\) −4.68193e10 −0.00278507
\(870\) 9.42197e12 0.557577
\(871\) −5.56610e10 −0.00327694
\(872\) 8.65028e12 0.506648
\(873\) −6.12275e10 −0.00356765
\(874\) 6.03759e11 0.0349995
\(875\) 0 0
\(876\) −1.00412e13 −0.576126
\(877\) −1.98607e12 −0.113369 −0.0566847 0.998392i \(-0.518053\pi\)
−0.0566847 + 0.998392i \(0.518053\pi\)
\(878\) −9.87082e12 −0.560568
\(879\) 2.58930e12 0.146296
\(880\) 1.43302e10 0.000805527 0
\(881\) −2.94431e13 −1.64662 −0.823308 0.567595i \(-0.807874\pi\)
−0.823308 + 0.567595i \(0.807874\pi\)
\(882\) 0 0
\(883\) 2.03034e13 1.12395 0.561973 0.827156i \(-0.310043\pi\)
0.561973 + 0.827156i \(0.310043\pi\)
\(884\) 5.45227e12 0.300291
\(885\) −1.57450e13 −0.862776
\(886\) −7.33472e12 −0.399882
\(887\) −1.55384e13 −0.842851 −0.421426 0.906863i \(-0.638470\pi\)
−0.421426 + 0.906863i \(0.638470\pi\)
\(888\) 2.87997e13 1.55428
\(889\) 0 0
\(890\) 6.85894e10 0.00366439
\(891\) −1.26273e12 −0.0671216
\(892\) 1.88982e13 0.999492
\(893\) −3.30281e11 −0.0173801
\(894\) −2.09067e13 −1.09463
\(895\) 1.17448e12 0.0611845
\(896\) 0 0
\(897\) 8.08654e12 0.417058
\(898\) 4.54408e12 0.233186
\(899\) −1.71668e12 −0.0876537
\(900\) −1.79350e11 −0.00911192
\(901\) −4.94951e12 −0.250207
\(902\) −1.96576e11 −0.00988781
\(903\) 0 0
\(904\) −1.08816e13 −0.541918
\(905\) 1.16410e12 0.0576860
\(906\) 1.22826e13 0.605637
\(907\) 3.47876e12 0.170684 0.0853419 0.996352i \(-0.472802\pi\)
0.0853419 + 0.996352i \(0.472802\pi\)
\(908\) −2.20900e13 −1.07847
\(909\) 7.79929e11 0.0378894
\(910\) 0 0
\(911\) 1.97042e13 0.947820 0.473910 0.880573i \(-0.342842\pi\)
0.473910 + 0.880573i \(0.342842\pi\)
\(912\) −5.60527e10 −0.00268300
\(913\) −6.67352e11 −0.0317861
\(914\) −1.64497e13 −0.779652
\(915\) 8.75529e12 0.412929
\(916\) 6.84919e12 0.321447
\(917\) 0 0
\(918\) −9.88469e12 −0.459379
\(919\) −4.10432e13 −1.89811 −0.949055 0.315110i \(-0.897959\pi\)
−0.949055 + 0.315110i \(0.897959\pi\)
\(920\) −6.05629e12 −0.278716
\(921\) −3.66954e13 −1.68052
\(922\) −5.12042e12 −0.233355
\(923\) 6.68513e12 0.303181
\(924\) 0 0
\(925\) 6.61752e12 0.297206
\(926\) −1.95826e13 −0.875228
\(927\) −2.59356e12 −0.115355
\(928\) 4.28218e13 1.89539
\(929\) 2.27448e12 0.100187 0.0500935 0.998745i \(-0.484048\pi\)
0.0500935 + 0.998745i \(0.484048\pi\)
\(930\) −3.04548e11 −0.0133500
\(931\) 0 0
\(932\) −1.32304e13 −0.574381
\(933\) 2.49980e13 1.08004
\(934\) 1.11916e12 0.0481205
\(935\) 5.00001e11 0.0213953
\(936\) −1.16076e12 −0.0494314
\(937\) −1.56837e13 −0.664693 −0.332346 0.943157i \(-0.607840\pi\)
−0.332346 + 0.943157i \(0.607840\pi\)
\(938\) 0 0
\(939\) −3.94392e13 −1.65552
\(940\) 1.24900e12 0.0521779
\(941\) 3.08044e13 1.28073 0.640367 0.768069i \(-0.278782\pi\)
0.640367 + 0.768069i \(0.278782\pi\)
\(942\) 2.32733e12 0.0963004
\(943\) 3.76224e12 0.154933
\(944\) 1.30295e12 0.0534014
\(945\) 0 0
\(946\) 1.40204e11 0.00569180
\(947\) 2.34156e12 0.0946084 0.0473042 0.998881i \(-0.484937\pi\)
0.0473042 + 0.998881i \(0.484937\pi\)
\(948\) −6.92545e11 −0.0278491
\(949\) −1.49326e13 −0.597638
\(950\) −2.84408e11 −0.0113288
\(951\) −6.32331e12 −0.250687
\(952\) 0 0
\(953\) −1.89037e13 −0.742383 −0.371192 0.928556i \(-0.621051\pi\)
−0.371192 + 0.928556i \(0.621051\pi\)
\(954\) 3.97250e11 0.0155273
\(955\) −1.84692e13 −0.718511
\(956\) −8.11253e12 −0.314120
\(957\) −3.23069e12 −0.124506
\(958\) −1.47183e13 −0.564564
\(959\) 0 0
\(960\) 7.94712e12 0.301988
\(961\) −2.63841e13 −0.997901
\(962\) 1.61463e13 0.607835
\(963\) 2.45215e12 0.0918816
\(964\) 2.28554e13 0.852396
\(965\) −1.60521e13 −0.595882
\(966\) 0 0
\(967\) −2.08781e13 −0.767842 −0.383921 0.923366i \(-0.625427\pi\)
−0.383921 + 0.923366i \(0.625427\pi\)
\(968\) 2.74451e13 1.00468
\(969\) −1.95576e12 −0.0712621
\(970\) 3.67168e11 0.0133166
\(971\) −4.59498e13 −1.65881 −0.829406 0.558646i \(-0.811321\pi\)
−0.829406 + 0.558646i \(0.811321\pi\)
\(972\) −2.53050e12 −0.0909302
\(973\) 0 0
\(974\) −6.46369e12 −0.230126
\(975\) −3.80926e12 −0.134996
\(976\) −7.24527e11 −0.0255582
\(977\) 2.95507e13 1.03763 0.518814 0.854887i \(-0.326374\pi\)
0.518814 + 0.854887i \(0.326374\pi\)
\(978\) −2.23825e13 −0.782319
\(979\) −2.35185e10 −0.000818254 0
\(980\) 0 0
\(981\) −1.09702e12 −0.0378184
\(982\) −4.54563e12 −0.155988
\(983\) −3.19858e13 −1.09261 −0.546306 0.837586i \(-0.683966\pi\)
−0.546306 + 0.837586i \(0.683966\pi\)
\(984\) −7.71288e12 −0.262264
\(985\) 1.55963e13 0.527910
\(986\) −2.72048e13 −0.916641
\(987\) 0 0
\(988\) 1.06341e12 0.0355054
\(989\) −2.68335e12 −0.0891854
\(990\) −4.01303e10 −0.00132774
\(991\) −3.48375e13 −1.14740 −0.573700 0.819065i \(-0.694493\pi\)
−0.573700 + 0.819065i \(0.694493\pi\)
\(992\) −1.38414e12 −0.0453813
\(993\) 4.84256e13 1.58053
\(994\) 0 0
\(995\) −8.98290e12 −0.290545
\(996\) −9.87138e12 −0.317842
\(997\) 5.14253e13 1.64835 0.824174 0.566336i \(-0.191640\pi\)
0.824174 + 0.566336i \(0.191640\pi\)
\(998\) 2.18373e12 0.0696806
\(999\) 4.48581e13 1.42494
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 245.10.a.n.1.11 18
7.6 odd 2 245.10.a.o.1.11 yes 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
245.10.a.n.1.11 18 1.1 even 1 trivial
245.10.a.o.1.11 yes 18 7.6 odd 2