L(s) = 1 | − 2·2-s − 3·3-s + 2·4-s + 5-s + 6·6-s + 6·9-s − 2·10-s + 11-s − 6·12-s − 3·13-s − 3·15-s − 4·16-s + 3·17-s − 12·18-s − 6·19-s + 2·20-s − 2·22-s − 4·23-s + 25-s + 6·26-s − 9·27-s − 29-s + 6·30-s − 6·31-s + 8·32-s − 3·33-s − 6·34-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 1.73·3-s + 4-s + 0.447·5-s + 2.44·6-s + 2·9-s − 0.632·10-s + 0.301·11-s − 1.73·12-s − 0.832·13-s − 0.774·15-s − 16-s + 0.727·17-s − 2.82·18-s − 1.37·19-s + 0.447·20-s − 0.426·22-s − 0.834·23-s + 1/5·25-s + 1.17·26-s − 1.73·27-s − 0.185·29-s + 1.09·30-s − 1.07·31-s + 1.41·32-s − 0.522·33-s − 1.02·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 - T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + p T + p T^{2} \) |
| 3 | \( 1 + p T + p T^{2} \) |
| 11 | \( 1 - T + p T^{2} \) |
| 13 | \( 1 + 3 T + p T^{2} \) |
| 17 | \( 1 - 3 T + p T^{2} \) |
| 19 | \( 1 + 6 T + p T^{2} \) |
| 23 | \( 1 + 4 T + p T^{2} \) |
| 29 | \( 1 + T + p T^{2} \) |
| 31 | \( 1 + 6 T + p T^{2} \) |
| 37 | \( 1 + p T^{2} \) |
| 41 | \( 1 + 6 T + p T^{2} \) |
| 43 | \( 1 + 6 T + p T^{2} \) |
| 47 | \( 1 - 9 T + p T^{2} \) |
| 53 | \( 1 + 10 T + p T^{2} \) |
| 59 | \( 1 - 6 T + p T^{2} \) |
| 61 | \( 1 + p T^{2} \) |
| 67 | \( 1 + 14 T + p T^{2} \) |
| 71 | \( 1 + 8 T + p T^{2} \) |
| 73 | \( 1 + 6 T + p T^{2} \) |
| 79 | \( 1 + T + p T^{2} \) |
| 83 | \( 1 + 12 T + p T^{2} \) |
| 89 | \( 1 + 12 T + p T^{2} \) |
| 97 | \( 1 - 15 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.36832909695861645450710523451, −10.39298032670518976720614402649, −10.02792671861300266401979001834, −8.895041085769743028052283031023, −7.56848203557801886905576002740, −6.66812515626338690414111791742, −5.69074574951383439724683067976, −4.49258853804675338518966926948, −1.70898778880961935771596537039, 0,
1.70898778880961935771596537039, 4.49258853804675338518966926948, 5.69074574951383439724683067976, 6.66812515626338690414111791742, 7.56848203557801886905576002740, 8.895041085769743028052283031023, 10.02792671861300266401979001834, 10.39298032670518976720614402649, 11.36832909695861645450710523451