L(s) = 1 | + (0.5 + 0.866i)3-s + (0.133 + 0.5i)7-s + (−0.499 + 0.866i)9-s + (−0.866 − 0.5i)13-s + (0.366 + 1.36i)19-s + (−0.366 + 0.366i)21-s + i·25-s − 0.999·27-s + (1.36 + 1.36i)31-s + (−1.36 − 0.366i)37-s − 0.999i·39-s + (0.866 + 0.5i)43-s + (0.633 − 0.366i)49-s + (−0.999 + i)57-s + (−0.866 − 0.5i)61-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)3-s + (0.133 + 0.5i)7-s + (−0.499 + 0.866i)9-s + (−0.866 − 0.5i)13-s + (0.366 + 1.36i)19-s + (−0.366 + 0.366i)21-s + i·25-s − 0.999·27-s + (1.36 + 1.36i)31-s + (−1.36 − 0.366i)37-s − 0.999i·39-s + (0.866 + 0.5i)43-s + (0.633 − 0.366i)49-s + (−0.999 + i)57-s + (−0.866 − 0.5i)61-s + ⋯ |
Λ(s)=(=(2496s/2ΓC(s)L(s)(−0.233−0.972i)Λ(1−s)
Λ(s)=(=(2496s/2ΓC(s)L(s)(−0.233−0.972i)Λ(1−s)
Degree: |
2 |
Conductor: |
2496
= 26⋅3⋅13
|
Sign: |
−0.233−0.972i
|
Analytic conductor: |
1.24566 |
Root analytic conductor: |
1.11609 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2496(1055,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2496, ( :0), −0.233−0.972i)
|
Particular Values
L(21) |
≈ |
1.287244608 |
L(21) |
≈ |
1.287244608 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.5−0.866i)T |
| 13 | 1+(0.866+0.5i)T |
good | 5 | 1−iT2 |
| 7 | 1+(−0.133−0.5i)T+(−0.866+0.5i)T2 |
| 11 | 1+(0.866+0.5i)T2 |
| 17 | 1+(−0.5−0.866i)T2 |
| 19 | 1+(−0.366−1.36i)T+(−0.866+0.5i)T2 |
| 23 | 1+(0.5−0.866i)T2 |
| 29 | 1+(−0.5+0.866i)T2 |
| 31 | 1+(−1.36−1.36i)T+iT2 |
| 37 | 1+(1.36+0.366i)T+(0.866+0.5i)T2 |
| 41 | 1+(−0.866−0.5i)T2 |
| 43 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 47 | 1+iT2 |
| 53 | 1+T2 |
| 59 | 1+(−0.866+0.5i)T2 |
| 61 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 67 | 1+(0.5+0.133i)T+(0.866+0.5i)T2 |
| 71 | 1+(−0.866+0.5i)T2 |
| 73 | 1+(−0.366−0.366i)T+iT2 |
| 79 | 1+1.73iT−T2 |
| 83 | 1+iT2 |
| 89 | 1+(0.866+0.5i)T2 |
| 97 | 1+(0.5+1.86i)T+(−0.866+0.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.260710298729083020265766884949, −8.680191453647401546587958871600, −7.906326279459783654165073306257, −7.25982427768462984186911939304, −6.01270788494567949783661299101, −5.28627355015494738689279689123, −4.65010498193238132387826834744, −3.54871748142952499290944302511, −2.89403190274989759179588307267, −1.77484794444131334455209268037,
0.804647898068817346502806250613, 2.18236534610030329694531345954, 2.85900411752761296474430016003, 4.06767484707079852693662532683, 4.84633484350411841906878057583, 5.97983267166276215685742683831, 6.80970520504917519731923375155, 7.31246798381799790775470463195, 8.032652344164921161942164488748, 8.828114123858920054868142065778