L(s) = 1 | − 1.37e3·7-s + 1.32e4·13-s − 9.18e3·19-s − 2.39e4·25-s − 4.45e5·31-s − 8.52e5·37-s + 1.50e5·43-s + 1.17e6·49-s − 1.30e6·61-s − 6.07e6·67-s + 3.63e6·73-s − 1.68e7·79-s − 1.82e7·91-s − 3.64e7·97-s − 3.09e7·103-s − 3.19e7·109-s − 6.66e7·121-s + 127-s + 131-s + 1.26e7·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | − 1.51·7-s + 1.67·13-s − 0.307·19-s − 0.307·25-s − 2.68·31-s − 2.76·37-s + 0.288·43-s + 10/7·49-s − 0.734·61-s − 2.46·67-s + 1.09·73-s − 3.85·79-s − 2.53·91-s − 4.05·97-s − 2.78·103-s − 2.36·109-s − 3.41·121-s + 0.464·133-s − 2.13·169-s + ⋯ |
Λ(s)=(=((28⋅38⋅74)s/2ΓC(s)4L(s)Λ(8−s)
Λ(s)=(=((28⋅38⋅74)s/2ΓC(s+7/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
28⋅38⋅74
|
Sign: |
1
|
Analytic conductor: |
3.84028×107 |
Root analytic conductor: |
8.87248 |
Motivic weight: |
7 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
4
|
Selberg data: |
(8, 28⋅38⋅74, ( :7/2,7/2,7/2,7/2), 1)
|
Particular Values
L(4) |
= |
0 |
L(21) |
= |
0 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 7 | C1 | (1+p3T)4 |
good | 5 | C22≀C2 | 1+23988T2−337917994p2T4+23988p14T6+p28T8 |
| 11 | C22≀C2 | 1+66638700T2+1869640076065382T4+66638700p14T6+p28T8 |
| 13 | D4 | (1−6636T+132998174T2−6636p7T3+p14T4)2 |
| 17 | C22≀C2 | 1−47340540T2+304481267672814902T4−47340540p14T6+p28T8 |
| 19 | D4 | (1+4592T+779207718T2+4592p7T3+p14T4)2 |
| 23 | C22≀C2 | 1−1458162852T2+22257185194263703190T4−1458162852p14T6+p28T8 |
| 29 | C22≀C2 | 1+38888338836T2+77⋯62T4+38888338836p14T6+p28T8 |
| 31 | D4 | (1+222768T+37091070062T2+222768p7T3+p14T4)2 |
| 37 | D4 | (1+426404T+127886837070T2+426404p7T3+p14T4)2 |
| 41 | C22≀C2 | 1+20538923492T2−33⋯18T4+20538923492p14T6+p28T8 |
| 43 | D4 | (1−75112T−159018745386T2−75112p7T3+p14T4)2 |
| 47 | C22≀C2 | 1+1246374912572T2+89⋯50T4+1246374912572p14T6+p28T8 |
| 53 | C22≀C2 | 1−1583203178380T2+33⋯42T4−1583203178380p14T6+p28T8 |
| 59 | C22≀C2 | 1+4638308305356T2+10⋯22T4+4638308305356p14T6+p28T8 |
| 61 | D4 | (1+651420T+6011864979998T2+651420p7T3+p14T4)2 |
| 67 | D4 | (1+3035848T+13583249522022T2+3035848p7T3+p14T4)2 |
| 71 | C22≀C2 | 1+18965138502300T2+18⋯62T4+18965138502300p14T6+p28T8 |
| 73 | D4 | (1−1815884T+3480307846614T2−1815884p7T3+p14T4)2 |
| 79 | D4 | (1+8449344T+55594921645598T2+8449344p7T3+p14T4)2 |
| 83 | C22≀C2 | 1+42171068827884T2+19⋯22T4+42171068827884p14T6+p28T8 |
| 89 | C22≀C2 | 1+125209641009956T2+78⋯22T4+125209641009956p14T6+p28T8 |
| 97 | D4 | (1+18246004T+241359719968806T2+18246004p7T3+p14T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.176804960700087156001750673924, −7.52746026032027695967384282822, −7.38897798401130006308341552390, −7.18871905068514839364563740478, −7.12210586512274957371632939359, −6.53580384491488422215690756300, −6.42302130216767427645239305831, −6.15116603126439566135620274415, −6.06556824906779349145964674417, −5.55121218188553383162781501693, −5.33744115820602921169840919180, −5.16340727838930836059552615389, −4.97208592264084290486570141198, −4.03165714156314589394822479088, −3.98932921317327353526885517996, −3.90149733788941743718702981773, −3.82574341543921192698948856484, −3.19372785401240981995850190577, −2.84828088185722445338837904774, −2.80851202304802577507559877586, −2.39203033339252285557403659578, −1.76715091672737984031257778312, −1.39743072023695782493108300958, −1.38767532699371223652205802179, −1.13582202255186179223433697523, 0, 0, 0, 0,
1.13582202255186179223433697523, 1.38767532699371223652205802179, 1.39743072023695782493108300958, 1.76715091672737984031257778312, 2.39203033339252285557403659578, 2.80851202304802577507559877586, 2.84828088185722445338837904774, 3.19372785401240981995850190577, 3.82574341543921192698948856484, 3.90149733788941743718702981773, 3.98932921317327353526885517996, 4.03165714156314589394822479088, 4.97208592264084290486570141198, 5.16340727838930836059552615389, 5.33744115820602921169840919180, 5.55121218188553383162781501693, 6.06556824906779349145964674417, 6.15116603126439566135620274415, 6.42302130216767427645239305831, 6.53580384491488422215690756300, 7.12210586512274957371632939359, 7.18871905068514839364563740478, 7.38897798401130006308341552390, 7.52746026032027695967384282822, 8.176804960700087156001750673924