Properties

Label 252.8.a.g.1.1
Level $252$
Weight $8$
Character 252.1
Self dual yes
Analytic conductor $78.721$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,8,Mod(1,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 252.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.7210264220\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 14292x^{2} + 540043x + 5027477 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-133.838\) of defining polynomial
Character \(\chi\) \(=\) 252.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-537.098 q^{5} -343.000 q^{7} +2419.02 q^{11} +5190.96 q^{13} +25751.6 q^{17} -34136.3 q^{19} +93525.7 q^{23} +210349. q^{25} +170556. q^{29} -285569. q^{31} +184225. q^{35} -540970. q^{37} -219356. q^{41} +876643. q^{43} -532161. q^{47} +117649. q^{49} -1.70818e6 q^{53} -1.29925e6 q^{55} -200256. q^{59} -941914. q^{61} -2.78805e6 q^{65} -2.43568e6 q^{67} +4.15568e6 q^{71} +5.31689e6 q^{73} -829724. q^{77} -3.41181e6 q^{79} +5.76711e6 q^{83} -1.38311e7 q^{85} -5.37254e6 q^{89} -1.78050e6 q^{91} +1.83346e7 q^{95} -7.26128e6 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 1372 q^{7} + 13272 q^{13} - 9184 q^{19} + 264524 q^{25} - 445536 q^{31} - 852808 q^{37} + 150224 q^{43} + 470596 q^{49} - 2627296 q^{55} - 1302840 q^{61} - 6071696 q^{67} + 3631768 q^{73} - 16898688 q^{79}+ \cdots - 36492008 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −537.098 −1.92158 −0.960790 0.277278i \(-0.910568\pi\)
−0.960790 + 0.277278i \(0.910568\pi\)
\(6\) 0 0
\(7\) −343.000 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2419.02 0.547980 0.273990 0.961733i \(-0.411656\pi\)
0.273990 + 0.961733i \(0.411656\pi\)
\(12\) 0 0
\(13\) 5190.96 0.655309 0.327654 0.944798i \(-0.393742\pi\)
0.327654 + 0.944798i \(0.393742\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 25751.6 1.27126 0.635628 0.771996i \(-0.280741\pi\)
0.635628 + 0.771996i \(0.280741\pi\)
\(18\) 0 0
\(19\) −34136.3 −1.14177 −0.570886 0.821029i \(-0.693400\pi\)
−0.570886 + 0.821029i \(0.693400\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 93525.7 1.60282 0.801408 0.598118i \(-0.204085\pi\)
0.801408 + 0.598118i \(0.204085\pi\)
\(24\) 0 0
\(25\) 210349. 2.69247
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 170556. 1.29859 0.649296 0.760536i \(-0.275064\pi\)
0.649296 + 0.760536i \(0.275064\pi\)
\(30\) 0 0
\(31\) −285569. −1.72165 −0.860827 0.508898i \(-0.830053\pi\)
−0.860827 + 0.508898i \(0.830053\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 184225. 0.726289
\(36\) 0 0
\(37\) −540970. −1.75577 −0.877884 0.478873i \(-0.841046\pi\)
−0.877884 + 0.478873i \(0.841046\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −219356. −0.497056 −0.248528 0.968625i \(-0.579947\pi\)
−0.248528 + 0.968625i \(0.579947\pi\)
\(42\) 0 0
\(43\) 876643. 1.68145 0.840723 0.541465i \(-0.182130\pi\)
0.840723 + 0.541465i \(0.182130\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −532161. −0.747653 −0.373827 0.927499i \(-0.621955\pi\)
−0.373827 + 0.927499i \(0.621955\pi\)
\(48\) 0 0
\(49\) 117649. 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.70818e6 −1.57604 −0.788022 0.615647i \(-0.788895\pi\)
−0.788022 + 0.615647i \(0.788895\pi\)
\(54\) 0 0
\(55\) −1.29925e6 −1.05299
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −200256. −0.126941 −0.0634706 0.997984i \(-0.520217\pi\)
−0.0634706 + 0.997984i \(0.520217\pi\)
\(60\) 0 0
\(61\) −941914. −0.531321 −0.265660 0.964067i \(-0.585590\pi\)
−0.265660 + 0.964067i \(0.585590\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.78805e6 −1.25923
\(66\) 0 0
\(67\) −2.43568e6 −0.989367 −0.494684 0.869073i \(-0.664716\pi\)
−0.494684 + 0.869073i \(0.664716\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.15568e6 1.37796 0.688981 0.724779i \(-0.258058\pi\)
0.688981 + 0.724779i \(0.258058\pi\)
\(72\) 0 0
\(73\) 5.31689e6 1.59966 0.799830 0.600226i \(-0.204923\pi\)
0.799830 + 0.600226i \(0.204923\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −829724. −0.207117
\(78\) 0 0
\(79\) −3.41181e6 −0.778556 −0.389278 0.921120i \(-0.627275\pi\)
−0.389278 + 0.921120i \(0.627275\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.76711e6 1.10709 0.553547 0.832818i \(-0.313274\pi\)
0.553547 + 0.832818i \(0.313274\pi\)
\(84\) 0 0
\(85\) −1.38311e7 −2.44282
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5.37254e6 −0.807820 −0.403910 0.914799i \(-0.632349\pi\)
−0.403910 + 0.914799i \(0.632349\pi\)
\(90\) 0 0
\(91\) −1.78050e6 −0.247683
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.83346e7 2.19401
\(96\) 0 0
\(97\) −7.26128e6 −0.807815 −0.403908 0.914800i \(-0.632348\pi\)
−0.403908 + 0.914800i \(0.632348\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.59557e6 0.347251 0.173625 0.984812i \(-0.444452\pi\)
0.173625 + 0.984812i \(0.444452\pi\)
\(102\) 0 0
\(103\) 3.05688e6 0.275644 0.137822 0.990457i \(-0.455990\pi\)
0.137822 + 0.990457i \(0.455990\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.93900e6 −0.310844 −0.155422 0.987848i \(-0.549674\pi\)
−0.155422 + 0.987848i \(0.549674\pi\)
\(108\) 0 0
\(109\) −5.07994e6 −0.375722 −0.187861 0.982196i \(-0.560155\pi\)
−0.187861 + 0.982196i \(0.560155\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.96196e7 1.27913 0.639566 0.768736i \(-0.279114\pi\)
0.639566 + 0.768736i \(0.279114\pi\)
\(114\) 0 0
\(115\) −5.02324e7 −3.07994
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −8.83279e6 −0.480489
\(120\) 0 0
\(121\) −1.36355e7 −0.699718
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −7.10172e7 −3.25221
\(126\) 0 0
\(127\) 6.82658e6 0.295726 0.147863 0.989008i \(-0.452760\pi\)
0.147863 + 0.989008i \(0.452760\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −3.45906e7 −1.34434 −0.672169 0.740397i \(-0.734637\pi\)
−0.672169 + 0.740397i \(0.734637\pi\)
\(132\) 0 0
\(133\) 1.17088e7 0.431549
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.64855e6 −0.0547748 −0.0273874 0.999625i \(-0.508719\pi\)
−0.0273874 + 0.999625i \(0.508719\pi\)
\(138\) 0 0
\(139\) −7.49730e6 −0.236784 −0.118392 0.992967i \(-0.537774\pi\)
−0.118392 + 0.992967i \(0.537774\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.25570e7 0.359096
\(144\) 0 0
\(145\) −9.16050e7 −2.49535
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2.88012e7 −0.713277 −0.356639 0.934242i \(-0.616077\pi\)
−0.356639 + 0.934242i \(0.616077\pi\)
\(150\) 0 0
\(151\) −4.72224e7 −1.11617 −0.558083 0.829785i \(-0.688463\pi\)
−0.558083 + 0.829785i \(0.688463\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.53379e8 3.30829
\(156\) 0 0
\(157\) 2.49497e7 0.514538 0.257269 0.966340i \(-0.417177\pi\)
0.257269 + 0.966340i \(0.417177\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3.20793e7 −0.605807
\(162\) 0 0
\(163\) −2.79194e7 −0.504950 −0.252475 0.967603i \(-0.581245\pi\)
−0.252475 + 0.967603i \(0.581245\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.44866e6 −0.107143 −0.0535713 0.998564i \(-0.517060\pi\)
−0.0535713 + 0.998564i \(0.517060\pi\)
\(168\) 0 0
\(169\) −3.58024e7 −0.570570
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −4.48961e7 −0.659246 −0.329623 0.944113i \(-0.606922\pi\)
−0.329623 + 0.944113i \(0.606922\pi\)
\(174\) 0 0
\(175\) −7.21497e7 −1.01766
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −6.52042e6 −0.0849748 −0.0424874 0.999097i \(-0.513528\pi\)
−0.0424874 + 0.999097i \(0.513528\pi\)
\(180\) 0 0
\(181\) −5.31522e7 −0.666264 −0.333132 0.942880i \(-0.608105\pi\)
−0.333132 + 0.942880i \(0.608105\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.90554e8 3.37385
\(186\) 0 0
\(187\) 6.22936e7 0.696623
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.52197e7 −0.884959 −0.442479 0.896779i \(-0.645901\pi\)
−0.442479 + 0.896779i \(0.645901\pi\)
\(192\) 0 0
\(193\) −2.18951e7 −0.219228 −0.109614 0.993974i \(-0.534961\pi\)
−0.109614 + 0.993974i \(0.534961\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.67401e8 1.56000 0.780001 0.625778i \(-0.215218\pi\)
0.780001 + 0.625778i \(0.215218\pi\)
\(198\) 0 0
\(199\) 6.16647e7 0.554691 0.277346 0.960770i \(-0.410545\pi\)
0.277346 + 0.960770i \(0.410545\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −5.85006e7 −0.490822
\(204\) 0 0
\(205\) 1.17815e8 0.955132
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −8.25765e7 −0.625668
\(210\) 0 0
\(211\) −4.83314e7 −0.354193 −0.177097 0.984193i \(-0.556671\pi\)
−0.177097 + 0.984193i \(0.556671\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4.70843e8 −3.23103
\(216\) 0 0
\(217\) 9.79503e7 0.650724
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.33675e8 0.833065
\(222\) 0 0
\(223\) −9.42998e7 −0.569435 −0.284717 0.958612i \(-0.591900\pi\)
−0.284717 + 0.958612i \(0.591900\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4.83633e7 −0.274426 −0.137213 0.990542i \(-0.543815\pi\)
−0.137213 + 0.990542i \(0.543815\pi\)
\(228\) 0 0
\(229\) 1.12295e8 0.617925 0.308962 0.951074i \(-0.400018\pi\)
0.308962 + 0.951074i \(0.400018\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2.27460e8 −1.17804 −0.589020 0.808118i \(-0.700486\pi\)
−0.589020 + 0.808118i \(0.700486\pi\)
\(234\) 0 0
\(235\) 2.85822e8 1.43668
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.09223e8 0.991328 0.495664 0.868514i \(-0.334925\pi\)
0.495664 + 0.868514i \(0.334925\pi\)
\(240\) 0 0
\(241\) −1.65415e8 −0.761227 −0.380614 0.924734i \(-0.624287\pi\)
−0.380614 + 0.924734i \(0.624287\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6.31890e7 −0.274511
\(246\) 0 0
\(247\) −1.77200e8 −0.748213
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4.17188e8 −1.66523 −0.832614 0.553854i \(-0.813156\pi\)
−0.832614 + 0.553854i \(0.813156\pi\)
\(252\) 0 0
\(253\) 2.26240e8 0.878311
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.89850e8 1.43262 0.716311 0.697781i \(-0.245829\pi\)
0.716311 + 0.697781i \(0.245829\pi\)
\(258\) 0 0
\(259\) 1.85553e8 0.663618
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.22631e7 0.0415675 0.0207838 0.999784i \(-0.493384\pi\)
0.0207838 + 0.999784i \(0.493384\pi\)
\(264\) 0 0
\(265\) 9.17460e8 3.02849
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −3.04005e8 −0.952243 −0.476121 0.879380i \(-0.657958\pi\)
−0.476121 + 0.879380i \(0.657958\pi\)
\(270\) 0 0
\(271\) −1.30857e8 −0.399397 −0.199699 0.979857i \(-0.563996\pi\)
−0.199699 + 0.979857i \(0.563996\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.08838e8 1.47542
\(276\) 0 0
\(277\) 3.68396e7 0.104144 0.0520722 0.998643i \(-0.483417\pi\)
0.0520722 + 0.998643i \(0.483417\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 3.26456e8 0.877714 0.438857 0.898557i \(-0.355383\pi\)
0.438857 + 0.898557i \(0.355383\pi\)
\(282\) 0 0
\(283\) 4.48742e8 1.17691 0.588456 0.808529i \(-0.299736\pi\)
0.588456 + 0.808529i \(0.299736\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.52390e7 0.187869
\(288\) 0 0
\(289\) 2.52806e8 0.616090
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.24224e8 0.288515 0.144257 0.989540i \(-0.453921\pi\)
0.144257 + 0.989540i \(0.453921\pi\)
\(294\) 0 0
\(295\) 1.07557e8 0.243928
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4.85488e8 1.05034
\(300\) 0 0
\(301\) −3.00688e8 −0.635527
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 5.05900e8 1.02098
\(306\) 0 0
\(307\) −8.34331e8 −1.64571 −0.822856 0.568249i \(-0.807621\pi\)
−0.822856 + 0.568249i \(0.807621\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.30334e8 0.245695 0.122848 0.992426i \(-0.460797\pi\)
0.122848 + 0.992426i \(0.460797\pi\)
\(312\) 0 0
\(313\) 9.25098e8 1.70523 0.852615 0.522540i \(-0.175016\pi\)
0.852615 + 0.522540i \(0.175016\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4.54884e8 −0.802036 −0.401018 0.916070i \(-0.631343\pi\)
−0.401018 + 0.916070i \(0.631343\pi\)
\(318\) 0 0
\(319\) 4.12577e8 0.711603
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −8.79065e8 −1.45148
\(324\) 0 0
\(325\) 1.09191e9 1.76440
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.82531e8 0.282586
\(330\) 0 0
\(331\) 1.24612e9 1.88870 0.944349 0.328945i \(-0.106693\pi\)
0.944349 + 0.328945i \(0.106693\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1.30820e9 1.90115
\(336\) 0 0
\(337\) 3.89702e7 0.0554661 0.0277331 0.999615i \(-0.491171\pi\)
0.0277331 + 0.999615i \(0.491171\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −6.90798e8 −0.943432
\(342\) 0 0
\(343\) −4.03536e7 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.16172e9 −1.49262 −0.746309 0.665600i \(-0.768176\pi\)
−0.746309 + 0.665600i \(0.768176\pi\)
\(348\) 0 0
\(349\) −7.69763e8 −0.969323 −0.484661 0.874702i \(-0.661057\pi\)
−0.484661 + 0.874702i \(0.661057\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.43421e9 −1.73541 −0.867705 0.497080i \(-0.834406\pi\)
−0.867705 + 0.497080i \(0.834406\pi\)
\(354\) 0 0
\(355\) −2.23200e9 −2.64786
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2.77386e8 0.316413 0.158206 0.987406i \(-0.449429\pi\)
0.158206 + 0.987406i \(0.449429\pi\)
\(360\) 0 0
\(361\) 2.71418e8 0.303643
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2.85569e9 −3.07388
\(366\) 0 0
\(367\) −1.04550e9 −1.10406 −0.552030 0.833824i \(-0.686147\pi\)
−0.552030 + 0.833824i \(0.686147\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5.85906e8 0.595689
\(372\) 0 0
\(373\) 1.00446e8 0.100219 0.0501097 0.998744i \(-0.484043\pi\)
0.0501097 + 0.998744i \(0.484043\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 8.85347e8 0.850979
\(378\) 0 0
\(379\) −4.16517e7 −0.0393002 −0.0196501 0.999807i \(-0.506255\pi\)
−0.0196501 + 0.999807i \(0.506255\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 6.91160e8 0.628612 0.314306 0.949322i \(-0.398228\pi\)
0.314306 + 0.949322i \(0.398228\pi\)
\(384\) 0 0
\(385\) 4.45643e8 0.397992
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.19534e9 −1.02960 −0.514799 0.857311i \(-0.672133\pi\)
−0.514799 + 0.857311i \(0.672133\pi\)
\(390\) 0 0
\(391\) 2.40844e9 2.03759
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.83247e9 1.49606
\(396\) 0 0
\(397\) 1.05066e8 0.0842745 0.0421373 0.999112i \(-0.486583\pi\)
0.0421373 + 0.999112i \(0.486583\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.95595e9 1.51479 0.757395 0.652957i \(-0.226472\pi\)
0.757395 + 0.652957i \(0.226472\pi\)
\(402\) 0 0
\(403\) −1.48238e9 −1.12821
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.30862e9 −0.962127
\(408\) 0 0
\(409\) −1.70570e9 −1.23274 −0.616370 0.787457i \(-0.711397\pi\)
−0.616370 + 0.787457i \(0.711397\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 6.86877e7 0.0479793
\(414\) 0 0
\(415\) −3.09750e9 −2.12737
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.64569e9 1.09294 0.546472 0.837477i \(-0.315970\pi\)
0.546472 + 0.837477i \(0.315970\pi\)
\(420\) 0 0
\(421\) −1.01405e9 −0.662327 −0.331164 0.943573i \(-0.607441\pi\)
−0.331164 + 0.943573i \(0.607441\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 5.41682e9 3.42281
\(426\) 0 0
\(427\) 3.23077e8 0.200820
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5.44415e8 −0.327537 −0.163768 0.986499i \(-0.552365\pi\)
−0.163768 + 0.986499i \(0.552365\pi\)
\(432\) 0 0
\(433\) −7.16016e8 −0.423853 −0.211927 0.977286i \(-0.567974\pi\)
−0.211927 + 0.977286i \(0.567974\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.19263e9 −1.83005
\(438\) 0 0
\(439\) −1.77093e9 −0.999025 −0.499513 0.866307i \(-0.666488\pi\)
−0.499513 + 0.866307i \(0.666488\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.61387e7 −0.0306796 −0.0153398 0.999882i \(-0.504883\pi\)
−0.0153398 + 0.999882i \(0.504883\pi\)
\(444\) 0 0
\(445\) 2.88558e9 1.55229
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 4.41414e8 0.230136 0.115068 0.993358i \(-0.463291\pi\)
0.115068 + 0.993358i \(0.463291\pi\)
\(450\) 0 0
\(451\) −5.30625e8 −0.272377
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 9.56302e8 0.475943
\(456\) 0 0
\(457\) 2.27735e9 1.11615 0.558075 0.829790i \(-0.311540\pi\)
0.558075 + 0.829790i \(0.311540\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −3.02054e9 −1.43593 −0.717963 0.696081i \(-0.754925\pi\)
−0.717963 + 0.696081i \(0.754925\pi\)
\(462\) 0 0
\(463\) −4.14855e9 −1.94251 −0.971253 0.238050i \(-0.923492\pi\)
−0.971253 + 0.238050i \(0.923492\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −8.64631e8 −0.392845 −0.196423 0.980519i \(-0.562932\pi\)
−0.196423 + 0.980519i \(0.562932\pi\)
\(468\) 0 0
\(469\) 8.35437e8 0.373946
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.12062e9 0.921399
\(474\) 0 0
\(475\) −7.18055e9 −3.07418
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −8.88155e8 −0.369245 −0.184622 0.982810i \(-0.559106\pi\)
−0.184622 + 0.982810i \(0.559106\pi\)
\(480\) 0 0
\(481\) −2.80816e9 −1.15057
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.90002e9 1.55228
\(486\) 0 0
\(487\) −3.71672e9 −1.45817 −0.729086 0.684422i \(-0.760055\pi\)
−0.729086 + 0.684422i \(0.760055\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −4.38376e9 −1.67133 −0.835664 0.549241i \(-0.814917\pi\)
−0.835664 + 0.549241i \(0.814917\pi\)
\(492\) 0 0
\(493\) 4.39208e9 1.65084
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.42540e9 −0.520821
\(498\) 0 0
\(499\) 1.44123e9 0.519256 0.259628 0.965709i \(-0.416400\pi\)
0.259628 + 0.965709i \(0.416400\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −1.09180e8 −0.0382521 −0.0191260 0.999817i \(-0.506088\pi\)
−0.0191260 + 0.999817i \(0.506088\pi\)
\(504\) 0 0
\(505\) −1.93117e9 −0.667270
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −2.59191e9 −0.871179 −0.435590 0.900145i \(-0.643460\pi\)
−0.435590 + 0.900145i \(0.643460\pi\)
\(510\) 0 0
\(511\) −1.82369e9 −0.604615
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1.64184e9 −0.529671
\(516\) 0 0
\(517\) −1.28731e9 −0.409699
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.15106e9 0.356589 0.178294 0.983977i \(-0.442942\pi\)
0.178294 + 0.983977i \(0.442942\pi\)
\(522\) 0 0
\(523\) −1.69209e8 −0.0517212 −0.0258606 0.999666i \(-0.508233\pi\)
−0.0258606 + 0.999666i \(0.508233\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −7.35387e9 −2.18866
\(528\) 0 0
\(529\) 5.34223e9 1.56902
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1.13867e9 −0.325725
\(534\) 0 0
\(535\) 2.11563e9 0.597311
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.84595e8 0.0782829
\(540\) 0 0
\(541\) −5.89209e8 −0.159985 −0.0799925 0.996795i \(-0.525490\pi\)
−0.0799925 + 0.996795i \(0.525490\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.72843e9 0.721979
\(546\) 0 0
\(547\) 3.40768e7 0.00890231 0.00445116 0.999990i \(-0.498583\pi\)
0.00445116 + 0.999990i \(0.498583\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −5.82214e9 −1.48270
\(552\) 0 0
\(553\) 1.17025e9 0.294266
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8.03397e9 1.96987 0.984933 0.172934i \(-0.0553246\pi\)
0.984933 + 0.172934i \(0.0553246\pi\)
\(558\) 0 0
\(559\) 4.55062e9 1.10187
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.65930e9 0.391874 0.195937 0.980616i \(-0.437225\pi\)
0.195937 + 0.980616i \(0.437225\pi\)
\(564\) 0 0
\(565\) −1.05376e10 −2.45795
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.28966e9 −0.293482 −0.146741 0.989175i \(-0.546878\pi\)
−0.146741 + 0.989175i \(0.546878\pi\)
\(570\) 0 0
\(571\) 1.02422e9 0.230233 0.115116 0.993352i \(-0.463276\pi\)
0.115116 + 0.993352i \(0.463276\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.96730e10 4.31553
\(576\) 0 0
\(577\) 1.92556e9 0.417294 0.208647 0.977991i \(-0.433094\pi\)
0.208647 + 0.977991i \(0.433094\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.97812e9 −0.418442
\(582\) 0 0
\(583\) −4.13212e9 −0.863641
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.95122e9 0.398174 0.199087 0.979982i \(-0.436202\pi\)
0.199087 + 0.979982i \(0.436202\pi\)
\(588\) 0 0
\(589\) 9.74829e9 1.96574
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 7.05091e7 0.0138853 0.00694263 0.999976i \(-0.497790\pi\)
0.00694263 + 0.999976i \(0.497790\pi\)
\(594\) 0 0
\(595\) 4.74407e9 0.923298
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −7.94791e9 −1.51098 −0.755491 0.655159i \(-0.772601\pi\)
−0.755491 + 0.655159i \(0.772601\pi\)
\(600\) 0 0
\(601\) 7.79115e9 1.46400 0.731999 0.681305i \(-0.238587\pi\)
0.731999 + 0.681305i \(0.238587\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 7.32361e9 1.34456
\(606\) 0 0
\(607\) −3.61289e9 −0.655683 −0.327841 0.944733i \(-0.606321\pi\)
−0.327841 + 0.944733i \(0.606321\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.76243e9 −0.489944
\(612\) 0 0
\(613\) 5.86399e9 1.02821 0.514104 0.857728i \(-0.328124\pi\)
0.514104 + 0.857728i \(0.328124\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 7.16695e9 1.22839 0.614195 0.789154i \(-0.289481\pi\)
0.614195 + 0.789154i \(0.289481\pi\)
\(618\) 0 0
\(619\) −1.02581e10 −1.73839 −0.869196 0.494468i \(-0.835363\pi\)
−0.869196 + 0.494468i \(0.835363\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1.84278e9 0.305327
\(624\) 0 0
\(625\) 2.17097e10 3.55691
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.39308e10 −2.23203
\(630\) 0 0
\(631\) −9.65432e9 −1.52974 −0.764872 0.644182i \(-0.777198\pi\)
−0.764872 + 0.644182i \(0.777198\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −3.66654e9 −0.568262
\(636\) 0 0
\(637\) 6.10711e8 0.0936156
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 5.02362e9 0.753380 0.376690 0.926339i \(-0.377062\pi\)
0.376690 + 0.926339i \(0.377062\pi\)
\(642\) 0 0
\(643\) −9.98500e9 −1.48119 −0.740593 0.671953i \(-0.765455\pi\)
−0.740593 + 0.671953i \(0.765455\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3.71598e9 0.539397 0.269698 0.962945i \(-0.413076\pi\)
0.269698 + 0.962945i \(0.413076\pi\)
\(648\) 0 0
\(649\) −4.84422e8 −0.0695613
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3.16574e9 −0.444917 −0.222459 0.974942i \(-0.571408\pi\)
−0.222459 + 0.974942i \(0.571408\pi\)
\(654\) 0 0
\(655\) 1.85785e10 2.58325
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 9.98585e9 1.35921 0.679604 0.733579i \(-0.262151\pi\)
0.679604 + 0.733579i \(0.262151\pi\)
\(660\) 0 0
\(661\) 1.21710e10 1.63916 0.819578 0.572968i \(-0.194208\pi\)
0.819578 + 0.572968i \(0.194208\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −6.28875e9 −0.829256
\(666\) 0 0
\(667\) 1.59513e10 2.08140
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −2.27851e9 −0.291153
\(672\) 0 0
\(673\) −8.03702e9 −1.01635 −0.508174 0.861254i \(-0.669679\pi\)
−0.508174 + 0.861254i \(0.669679\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −8.71271e9 −1.07918 −0.539589 0.841929i \(-0.681420\pi\)
−0.539589 + 0.841929i \(0.681420\pi\)
\(678\) 0 0
\(679\) 2.49062e9 0.305325
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.51030e10 −1.81380 −0.906900 0.421345i \(-0.861558\pi\)
−0.906900 + 0.421345i \(0.861558\pi\)
\(684\) 0 0
\(685\) 8.85434e8 0.105254
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −8.86710e9 −1.03280
\(690\) 0 0
\(691\) −8.19095e9 −0.944411 −0.472206 0.881488i \(-0.656542\pi\)
−0.472206 + 0.881488i \(0.656542\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4.02678e9 0.455000
\(696\) 0 0
\(697\) −5.64875e9 −0.631885
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −6.88854e9 −0.755290 −0.377645 0.925950i \(-0.623266\pi\)
−0.377645 + 0.925950i \(0.623266\pi\)
\(702\) 0 0
\(703\) 1.84667e10 2.00469
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.23328e9 −0.131249
\(708\) 0 0
\(709\) −6.06034e9 −0.638609 −0.319304 0.947652i \(-0.603449\pi\)
−0.319304 + 0.947652i \(0.603449\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −2.67081e10 −2.75949
\(714\) 0 0
\(715\) −6.74436e9 −0.690032
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.21081e10 −1.21485 −0.607427 0.794376i \(-0.707798\pi\)
−0.607427 + 0.794376i \(0.707798\pi\)
\(720\) 0 0
\(721\) −1.04851e9 −0.104183
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3.58762e10 3.49642
\(726\) 0 0
\(727\) 5.51884e9 0.532694 0.266347 0.963877i \(-0.414183\pi\)
0.266347 + 0.963877i \(0.414183\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2.25749e10 2.13755
\(732\) 0 0
\(733\) 9.47965e9 0.889054 0.444527 0.895765i \(-0.353372\pi\)
0.444527 + 0.895765i \(0.353372\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.89194e9 −0.542154
\(738\) 0 0
\(739\) 9.44295e9 0.860701 0.430351 0.902662i \(-0.358390\pi\)
0.430351 + 0.902662i \(0.358390\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 7.43094e9 0.664635 0.332317 0.943168i \(-0.392169\pi\)
0.332317 + 0.943168i \(0.392169\pi\)
\(744\) 0 0
\(745\) 1.54690e10 1.37062
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.35108e9 0.117488
\(750\) 0 0
\(751\) 9.42171e9 0.811689 0.405845 0.913942i \(-0.366977\pi\)
0.405845 + 0.913942i \(0.366977\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2.53631e10 2.14480
\(756\) 0 0
\(757\) 1.93994e9 0.162537 0.0812684 0.996692i \(-0.474103\pi\)
0.0812684 + 0.996692i \(0.474103\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.66028e10 1.36563 0.682817 0.730589i \(-0.260754\pi\)
0.682817 + 0.730589i \(0.260754\pi\)
\(762\) 0 0
\(763\) 1.74242e9 0.142009
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.03952e9 −0.0831857
\(768\) 0 0
\(769\) −7.78402e9 −0.617251 −0.308625 0.951184i \(-0.599869\pi\)
−0.308625 + 0.951184i \(0.599869\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −1.37574e10 −1.07130 −0.535648 0.844441i \(-0.679933\pi\)
−0.535648 + 0.844441i \(0.679933\pi\)
\(774\) 0 0
\(775\) −6.00692e10 −4.63550
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 7.48800e9 0.567524
\(780\) 0 0
\(781\) 1.00527e10 0.755096
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.34004e10 −0.988725
\(786\) 0 0
\(787\) 4.66786e9 0.341355 0.170678 0.985327i \(-0.445404\pi\)
0.170678 + 0.985327i \(0.445404\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −6.72952e9 −0.483467
\(792\) 0 0
\(793\) −4.88944e9 −0.348179
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.78171e10 1.24662 0.623308 0.781976i \(-0.285788\pi\)
0.623308 + 0.781976i \(0.285788\pi\)
\(798\) 0 0
\(799\) −1.37040e10 −0.950458
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.28617e10 0.876582
\(804\) 0 0
\(805\) 1.72297e10 1.16411
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −7.65416e9 −0.508250 −0.254125 0.967171i \(-0.581788\pi\)
−0.254125 + 0.967171i \(0.581788\pi\)
\(810\) 0 0
\(811\) −1.69961e10 −1.11886 −0.559431 0.828877i \(-0.688980\pi\)
−0.559431 + 0.828877i \(0.688980\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1.49954e10 0.970302
\(816\) 0 0
\(817\) −2.99254e10 −1.91983
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −7.21555e8 −0.0455060 −0.0227530 0.999741i \(-0.507243\pi\)
−0.0227530 + 0.999741i \(0.507243\pi\)
\(822\) 0 0
\(823\) 2.18708e10 1.36762 0.683808 0.729662i \(-0.260322\pi\)
0.683808 + 0.729662i \(0.260322\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −2.17686e10 −1.33832 −0.669161 0.743117i \(-0.733346\pi\)
−0.669161 + 0.743117i \(0.733346\pi\)
\(828\) 0 0
\(829\) −2.57497e10 −1.56975 −0.784875 0.619654i \(-0.787273\pi\)
−0.784875 + 0.619654i \(0.787273\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 3.02965e9 0.181608
\(834\) 0 0
\(835\) 3.46356e9 0.205883
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 6.99796e9 0.409077 0.204538 0.978859i \(-0.434431\pi\)
0.204538 + 0.978859i \(0.434431\pi\)
\(840\) 0 0
\(841\) 1.18393e10 0.686343
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.92294e10 1.09640
\(846\) 0 0
\(847\) 4.67698e9 0.264468
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −5.05946e10 −2.81417
\(852\) 0 0
\(853\) −3.00829e10 −1.65958 −0.829790 0.558076i \(-0.811540\pi\)
−0.829790 + 0.558076i \(0.811540\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −2.98054e10 −1.61757 −0.808783 0.588107i \(-0.799873\pi\)
−0.808783 + 0.588107i \(0.799873\pi\)
\(858\) 0 0
\(859\) 1.44457e9 0.0777612 0.0388806 0.999244i \(-0.487621\pi\)
0.0388806 + 0.999244i \(0.487621\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2.26360e9 0.119884 0.0599421 0.998202i \(-0.480908\pi\)
0.0599421 + 0.998202i \(0.480908\pi\)
\(864\) 0 0
\(865\) 2.41136e10 1.26679
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −8.25323e9 −0.426633
\(870\) 0 0
\(871\) −1.26435e10 −0.648341
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2.43589e10 1.22922
\(876\) 0 0
\(877\) −1.22601e9 −0.0613754 −0.0306877 0.999529i \(-0.509770\pi\)
−0.0306877 + 0.999529i \(0.509770\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −9.59512e9 −0.472753 −0.236377 0.971661i \(-0.575960\pi\)
−0.236377 + 0.971661i \(0.575960\pi\)
\(882\) 0 0
\(883\) −1.76041e10 −0.860500 −0.430250 0.902710i \(-0.641575\pi\)
−0.430250 + 0.902710i \(0.641575\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −2.33540e10 −1.12364 −0.561821 0.827259i \(-0.689899\pi\)
−0.561821 + 0.827259i \(0.689899\pi\)
\(888\) 0 0
\(889\) −2.34152e9 −0.111774
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.81660e10 0.853650
\(894\) 0 0
\(895\) 3.50210e9 0.163286
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4.87055e10 −2.23573
\(900\) 0 0
\(901\) −4.39884e10 −2.00355
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.85479e10 1.28028
\(906\) 0 0
\(907\) −2.41519e10 −1.07480 −0.537398 0.843329i \(-0.680593\pi\)
−0.537398 + 0.843329i \(0.680593\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1.95549e10 −0.856923 −0.428462 0.903560i \(-0.640944\pi\)
−0.428462 + 0.903560i \(0.640944\pi\)
\(912\) 0 0
\(913\) 1.39507e10 0.606666
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.18646e10 0.508112
\(918\) 0 0
\(919\) 3.05841e10 1.29984 0.649921 0.760002i \(-0.274802\pi\)
0.649921 + 0.760002i \(0.274802\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2.15720e10 0.902991
\(924\) 0 0
\(925\) −1.13793e11 −4.72735
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 2.53417e10 1.03700 0.518502 0.855076i \(-0.326490\pi\)
0.518502 + 0.855076i \(0.326490\pi\)
\(930\) 0 0
\(931\) −4.01611e9 −0.163110
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −3.34577e10 −1.33862
\(936\) 0 0
\(937\) 3.21831e9 0.127802 0.0639012 0.997956i \(-0.479646\pi\)
0.0639012 + 0.997956i \(0.479646\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.54966e10 0.606278 0.303139 0.952946i \(-0.401965\pi\)
0.303139 + 0.952946i \(0.401965\pi\)
\(942\) 0 0
\(943\) −2.05154e10 −0.796689
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −3.26112e10 −1.24779 −0.623896 0.781508i \(-0.714451\pi\)
−0.623896 + 0.781508i \(0.714451\pi\)
\(948\) 0 0
\(949\) 2.75998e10 1.04827
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −3.30210e10 −1.23585 −0.617925 0.786237i \(-0.712026\pi\)
−0.617925 + 0.786237i \(0.712026\pi\)
\(954\) 0 0
\(955\) 4.57713e10 1.70052
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 5.65454e8 0.0207029
\(960\) 0 0
\(961\) 5.40373e10 1.96409
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.17598e10 0.421264
\(966\) 0 0
\(967\) 1.70652e9 0.0606904 0.0303452 0.999539i \(-0.490339\pi\)
0.0303452 + 0.999539i \(0.490339\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 2.51748e10 0.882469 0.441234 0.897392i \(-0.354541\pi\)
0.441234 + 0.897392i \(0.354541\pi\)
\(972\) 0 0
\(973\) 2.57157e9 0.0894961
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 3.44905e10 1.18323 0.591615 0.806221i \(-0.298491\pi\)
0.591615 + 0.806221i \(0.298491\pi\)
\(978\) 0 0
\(979\) −1.29963e10 −0.442670
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 2.14368e10 0.719819 0.359909 0.932987i \(-0.382808\pi\)
0.359909 + 0.932987i \(0.382808\pi\)
\(984\) 0 0
\(985\) −8.99105e10 −2.99767
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 8.19886e10 2.69505
\(990\) 0 0
\(991\) −3.90017e10 −1.27299 −0.636497 0.771280i \(-0.719617\pi\)
−0.636497 + 0.771280i \(0.719617\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −3.31200e10 −1.06588
\(996\) 0 0
\(997\) −2.29029e8 −0.00731911 −0.00365955 0.999993i \(-0.501165\pi\)
−0.00365955 + 0.999993i \(0.501165\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.8.a.g.1.1 4
3.2 odd 2 inner 252.8.a.g.1.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.8.a.g.1.1 4 1.1 even 1 trivial
252.8.a.g.1.4 yes 4 3.2 odd 2 inner