L(s) = 1 | + (21.6 − 37.4i)5-s + (487. + 765. i)7-s + (2.46e3 − 1.42e3i)11-s − 1.90e3i·13-s + (−1.71e4 − 2.97e4i)17-s + (−2.75e4 − 1.59e4i)19-s + (3.58e4 + 2.06e4i)23-s + (3.81e4 + 6.60e4i)25-s − 3.99e3i·29-s + (−1.10e5 + 6.39e4i)31-s + (3.92e4 − 1.70e3i)35-s + (2.43e5 − 4.21e5i)37-s − 1.19e4·41-s + 3.23e5·43-s + (−4.71e5 + 8.17e5i)47-s + ⋯ |
L(s) = 1 | + (0.0774 − 0.134i)5-s + (0.537 + 0.843i)7-s + (0.558 − 0.322i)11-s − 0.240i·13-s + (−0.848 − 1.46i)17-s + (−0.923 − 0.532i)19-s + (0.613 + 0.354i)23-s + (0.488 + 0.845i)25-s − 0.0304i·29-s + (−0.668 + 0.385i)31-s + (0.154 − 0.00673i)35-s + (0.790 − 1.36i)37-s − 0.0271·41-s + 0.619·43-s + (−0.662 + 1.14i)47-s + ⋯ |
Λ(s)=(=(252s/2ΓC(s)L(s)(0.341+0.939i)Λ(8−s)
Λ(s)=(=(252s/2ΓC(s+7/2)L(s)(0.341+0.939i)Λ(1−s)
Degree: |
2 |
Conductor: |
252
= 22⋅32⋅7
|
Sign: |
0.341+0.939i
|
Analytic conductor: |
78.7210 |
Root analytic conductor: |
8.87248 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ252(89,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 252, ( :7/2), 0.341+0.939i)
|
Particular Values
L(4) |
≈ |
1.879298642 |
L(21) |
≈ |
1.879298642 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(−487.−765.i)T |
good | 5 | 1+(−21.6+37.4i)T+(−3.90e4−6.76e4i)T2 |
| 11 | 1+(−2.46e3+1.42e3i)T+(9.74e6−1.68e7i)T2 |
| 13 | 1+1.90e3iT−6.27e7T2 |
| 17 | 1+(1.71e4+2.97e4i)T+(−2.05e8+3.55e8i)T2 |
| 19 | 1+(2.75e4+1.59e4i)T+(4.46e8+7.74e8i)T2 |
| 23 | 1+(−3.58e4−2.06e4i)T+(1.70e9+2.94e9i)T2 |
| 29 | 1+3.99e3iT−1.72e10T2 |
| 31 | 1+(1.10e5−6.39e4i)T+(1.37e10−2.38e10i)T2 |
| 37 | 1+(−2.43e5+4.21e5i)T+(−4.74e10−8.22e10i)T2 |
| 41 | 1+1.19e4T+1.94e11T2 |
| 43 | 1−3.23e5T+2.71e11T2 |
| 47 | 1+(4.71e5−8.17e5i)T+(−2.53e11−4.38e11i)T2 |
| 53 | 1+(−1.78e6+1.02e6i)T+(5.87e11−1.01e12i)T2 |
| 59 | 1+(5.58e5+9.66e5i)T+(−1.24e12+2.15e12i)T2 |
| 61 | 1+(2.64e6+1.52e6i)T+(1.57e12+2.72e12i)T2 |
| 67 | 1+(5.02e5+8.70e5i)T+(−3.03e12+5.24e12i)T2 |
| 71 | 1+2.34e6iT−9.09e12T2 |
| 73 | 1+(−1.94e6+1.12e6i)T+(5.52e12−9.56e12i)T2 |
| 79 | 1+(4.54e5−7.87e5i)T+(−9.60e12−1.66e13i)T2 |
| 83 | 1−4.64e6T+2.71e13T2 |
| 89 | 1+(−4.97e6+8.61e6i)T+(−2.21e13−3.83e13i)T2 |
| 97 | 1+7.88e6iT−8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.92415942631459992347089365712, −9.201985165235257596839476917142, −9.021284030162887655550099469961, −7.67584996562799836825615509789, −6.60300099640709277067383961371, −5.43873969106213135240888124938, −4.54993009567162287901109573810, −3.02697648887917276743922927789, −1.89801265151282306826895420482, −0.47064611695530770147848396880,
1.10166634157769611502831489800, 2.20446374423611244355238936414, 3.89924038352375647600232836076, 4.57084974631058641789185397313, 6.14955259945402330685263142052, 6.94517567960920581144319230097, 8.118176022043949140745005204405, 8.944307107173077261651582751497, 10.29650460531866653824023902663, 10.78810600702103762893257292968