L(s) = 1 | + (21.6 − 37.4i)5-s + (487. + 765. i)7-s + (2.46e3 − 1.42e3i)11-s − 1.90e3i·13-s + (−1.71e4 − 2.97e4i)17-s + (−2.75e4 − 1.59e4i)19-s + (3.58e4 + 2.06e4i)23-s + (3.81e4 + 6.60e4i)25-s − 3.99e3i·29-s + (−1.10e5 + 6.39e4i)31-s + (3.92e4 − 1.70e3i)35-s + (2.43e5 − 4.21e5i)37-s − 1.19e4·41-s + 3.23e5·43-s + (−4.71e5 + 8.17e5i)47-s + ⋯ |
L(s) = 1 | + (0.0774 − 0.134i)5-s + (0.537 + 0.843i)7-s + (0.558 − 0.322i)11-s − 0.240i·13-s + (−0.848 − 1.46i)17-s + (−0.923 − 0.532i)19-s + (0.613 + 0.354i)23-s + (0.488 + 0.845i)25-s − 0.0304i·29-s + (−0.668 + 0.385i)31-s + (0.154 − 0.00673i)35-s + (0.790 − 1.36i)37-s − 0.0271·41-s + 0.619·43-s + (−0.662 + 1.14i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.341 + 0.939i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.341 + 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(1.879298642\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.879298642\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-487. - 765. i)T \) |
good | 5 | \( 1 + (-21.6 + 37.4i)T + (-3.90e4 - 6.76e4i)T^{2} \) |
| 11 | \( 1 + (-2.46e3 + 1.42e3i)T + (9.74e6 - 1.68e7i)T^{2} \) |
| 13 | \( 1 + 1.90e3iT - 6.27e7T^{2} \) |
| 17 | \( 1 + (1.71e4 + 2.97e4i)T + (-2.05e8 + 3.55e8i)T^{2} \) |
| 19 | \( 1 + (2.75e4 + 1.59e4i)T + (4.46e8 + 7.74e8i)T^{2} \) |
| 23 | \( 1 + (-3.58e4 - 2.06e4i)T + (1.70e9 + 2.94e9i)T^{2} \) |
| 29 | \( 1 + 3.99e3iT - 1.72e10T^{2} \) |
| 31 | \( 1 + (1.10e5 - 6.39e4i)T + (1.37e10 - 2.38e10i)T^{2} \) |
| 37 | \( 1 + (-2.43e5 + 4.21e5i)T + (-4.74e10 - 8.22e10i)T^{2} \) |
| 41 | \( 1 + 1.19e4T + 1.94e11T^{2} \) |
| 43 | \( 1 - 3.23e5T + 2.71e11T^{2} \) |
| 47 | \( 1 + (4.71e5 - 8.17e5i)T + (-2.53e11 - 4.38e11i)T^{2} \) |
| 53 | \( 1 + (-1.78e6 + 1.02e6i)T + (5.87e11 - 1.01e12i)T^{2} \) |
| 59 | \( 1 + (5.58e5 + 9.66e5i)T + (-1.24e12 + 2.15e12i)T^{2} \) |
| 61 | \( 1 + (2.64e6 + 1.52e6i)T + (1.57e12 + 2.72e12i)T^{2} \) |
| 67 | \( 1 + (5.02e5 + 8.70e5i)T + (-3.03e12 + 5.24e12i)T^{2} \) |
| 71 | \( 1 + 2.34e6iT - 9.09e12T^{2} \) |
| 73 | \( 1 + (-1.94e6 + 1.12e6i)T + (5.52e12 - 9.56e12i)T^{2} \) |
| 79 | \( 1 + (4.54e5 - 7.87e5i)T + (-9.60e12 - 1.66e13i)T^{2} \) |
| 83 | \( 1 - 4.64e6T + 2.71e13T^{2} \) |
| 89 | \( 1 + (-4.97e6 + 8.61e6i)T + (-2.21e13 - 3.83e13i)T^{2} \) |
| 97 | \( 1 + 7.88e6iT - 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.92415942631459992347089365712, −9.201985165235257596839476917142, −9.021284030162887655550099469961, −7.67584996562799836825615509789, −6.60300099640709277067383961371, −5.43873969106213135240888124938, −4.54993009567162287901109573810, −3.02697648887917276743922927789, −1.89801265151282306826895420482, −0.47064611695530770147848396880,
1.10166634157769611502831489800, 2.20446374423611244355238936414, 3.89924038352375647600232836076, 4.57084974631058641789185397313, 6.14955259945402330685263142052, 6.94517567960920581144319230097, 8.118176022043949140745005204405, 8.944307107173077261651582751497, 10.29650460531866653824023902663, 10.78810600702103762893257292968