Properties

Label 252.8.t.a.89.10
Level $252$
Weight $8$
Character 252.89
Analytic conductor $78.721$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,8,Mod(17,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.17");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 252.t (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(78.7210264220\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 89.10
Character \(\chi\) \(=\) 252.89
Dual form 252.8.t.a.17.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(21.6450 - 37.4903i) q^{5} +(487.468 + 765.452i) q^{7} +(2464.10 - 1422.65i) q^{11} -1905.54i q^{13} +(-17180.3 - 29757.1i) q^{17} +(-27599.1 - 15934.3i) q^{19} +(35809.5 + 20674.6i) q^{23} +(38125.5 + 66035.3i) q^{25} -3997.05i q^{29} +(-110802. + 63971.8i) q^{31} +(39248.3 - 1707.10i) q^{35} +(243552. - 421845. i) q^{37} -11984.7 q^{41} +323185. q^{43} +(-471739. + 817076. i) q^{47} +(-348292. + 746268. i) q^{49} +(1.78030e6 - 1.02785e6i) q^{53} -123173. i q^{55} +(-558158. - 966758. i) q^{59} +(-2.64733e6 - 1.52844e6i) q^{61} +(-71439.2 - 41245.5i) q^{65} +(-502727. - 870748. i) q^{67} -2.34983e6i q^{71} +(1.94909e6 - 1.12531e6i) q^{73} +(2.29014e6 + 1.19266e6i) q^{77} +(-454834. + 787795. i) q^{79} +4.64507e6 q^{83} -1.48747e6 q^{85} +(4.97345e6 - 8.61427e6i) q^{89} +(1.45860e6 - 928890. i) q^{91} +(-1.19477e6 + 689798. i) q^{95} -7.88352e6i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 2634 q^{7} - 47862 q^{19} - 360762 q^{25} + 486018 q^{31} - 972270 q^{37} + 298788 q^{43} + 1556886 q^{49} + 4324644 q^{61} - 2969562 q^{67} - 5157378 q^{73} + 7676514 q^{79} - 15214128 q^{85} - 6114678 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 21.6450 37.4903i 0.0774397 0.134129i −0.824705 0.565563i \(-0.808659\pi\)
0.902145 + 0.431434i \(0.141992\pi\)
\(6\) 0 0
\(7\) 487.468 + 765.452i 0.537160 + 0.843481i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2464.10 1422.65i 0.558193 0.322273i −0.194227 0.980957i \(-0.562220\pi\)
0.752420 + 0.658684i \(0.228886\pi\)
\(12\) 0 0
\(13\) 1905.54i 0.240556i −0.992740 0.120278i \(-0.961621\pi\)
0.992740 0.120278i \(-0.0383786\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −17180.3 29757.1i −0.848124 1.46899i −0.882880 0.469598i \(-0.844399\pi\)
0.0347563 0.999396i \(-0.488934\pi\)
\(18\) 0 0
\(19\) −27599.1 15934.3i −0.923117 0.532962i −0.0384887 0.999259i \(-0.512254\pi\)
−0.884628 + 0.466297i \(0.845588\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 35809.5 + 20674.6i 0.613693 + 0.354316i 0.774409 0.632685i \(-0.218047\pi\)
−0.160716 + 0.987001i \(0.551380\pi\)
\(24\) 0 0
\(25\) 38125.5 + 66035.3i 0.488006 + 0.845252i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3997.05i 0.0304332i −0.999884 0.0152166i \(-0.995156\pi\)
0.999884 0.0152166i \(-0.00484378\pi\)
\(30\) 0 0
\(31\) −110802. + 63971.8i −0.668011 + 0.385676i −0.795322 0.606187i \(-0.792698\pi\)
0.127312 + 0.991863i \(0.459365\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 39248.3 1707.10i 0.154733 0.00673007i
\(36\) 0 0
\(37\) 243552. 421845.i 0.790471 1.36914i −0.135205 0.990818i \(-0.543169\pi\)
0.925676 0.378318i \(-0.123497\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −11984.7 −0.0271571 −0.0135785 0.999908i \(-0.504322\pi\)
−0.0135785 + 0.999908i \(0.504322\pi\)
\(42\) 0 0
\(43\) 323185. 0.619886 0.309943 0.950755i \(-0.399690\pi\)
0.309943 + 0.950755i \(0.399690\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −471739. + 817076.i −0.662765 + 1.14794i 0.317121 + 0.948385i \(0.397284\pi\)
−0.979886 + 0.199557i \(0.936050\pi\)
\(48\) 0 0
\(49\) −348292. + 746268.i −0.422919 + 0.906168i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.78030e6 1.02785e6i 1.64258 0.948344i 0.662669 0.748913i \(-0.269424\pi\)
0.979912 0.199432i \(-0.0639096\pi\)
\(54\) 0 0
\(55\) 123173.i 0.0998268i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −558158. 966758.i −0.353814 0.612824i 0.633100 0.774070i \(-0.281782\pi\)
−0.986914 + 0.161246i \(0.948449\pi\)
\(60\) 0 0
\(61\) −2.64733e6 1.52844e6i −1.49332 0.862170i −0.493352 0.869830i \(-0.664229\pi\)
−0.999971 + 0.00765904i \(0.997562\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −71439.2 41245.5i −0.0322656 0.0186286i
\(66\) 0 0
\(67\) −502727. 870748.i −0.204207 0.353696i 0.745673 0.666312i \(-0.232128\pi\)
−0.949880 + 0.312616i \(0.898795\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.34983e6i 0.779170i −0.920990 0.389585i \(-0.872618\pi\)
0.920990 0.389585i \(-0.127382\pi\)
\(72\) 0 0
\(73\) 1.94909e6 1.12531e6i 0.586409 0.338564i −0.177267 0.984163i \(-0.556726\pi\)
0.763676 + 0.645599i \(0.223392\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.29014e6 + 1.19266e6i 0.571670 + 0.297713i
\(78\) 0 0
\(79\) −454834. + 787795.i −0.103791 + 0.179771i −0.913243 0.407414i \(-0.866431\pi\)
0.809453 + 0.587185i \(0.199764\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4.64507e6 0.891701 0.445851 0.895107i \(-0.352901\pi\)
0.445851 + 0.895107i \(0.352901\pi\)
\(84\) 0 0
\(85\) −1.48747e6 −0.262714
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.97345e6 8.61427e6i 0.747813 1.29525i −0.201056 0.979580i \(-0.564437\pi\)
0.948869 0.315670i \(-0.102229\pi\)
\(90\) 0 0
\(91\) 1.45860e6 928890.i 0.202904 0.129217i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.19477e6 + 689798.i −0.142972 + 0.0825448i
\(96\) 0 0
\(97\) 7.88352e6i 0.877040i −0.898722 0.438520i \(-0.855503\pi\)
0.898722 0.438520i \(-0.144497\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.92951e6 + 3.34201e6i 0.186347 + 0.322763i 0.944030 0.329861i \(-0.107002\pi\)
−0.757682 + 0.652623i \(0.773668\pi\)
\(102\) 0 0
\(103\) −4.38680e6 2.53272e6i −0.395564 0.228379i 0.289004 0.957328i \(-0.406676\pi\)
−0.684568 + 0.728949i \(0.740009\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.61374e7 + 9.31692e6i 1.27347 + 0.735240i 0.975640 0.219378i \(-0.0704029\pi\)
0.297833 + 0.954618i \(0.403736\pi\)
\(108\) 0 0
\(109\) −9.71053e6 1.68191e7i −0.718208 1.24397i −0.961709 0.274072i \(-0.911629\pi\)
0.243501 0.969901i \(-0.421704\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.51561e7i 0.988131i −0.869425 0.494065i \(-0.835510\pi\)
0.869425 0.494065i \(-0.164490\pi\)
\(114\) 0 0
\(115\) 1.55020e6 895007.i 0.0950484 0.0548762i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.44028e7 2.76564e7i 0.783490 1.50446i
\(120\) 0 0
\(121\) −5.69572e6 + 9.86528e6i −0.292280 + 0.506245i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.68295e6 0.306043
\(126\) 0 0
\(127\) −2.69027e7 −1.16542 −0.582711 0.812679i \(-0.698008\pi\)
−0.582711 + 0.812679i \(0.698008\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.43289e7 2.48184e7i 0.556883 0.964549i −0.440872 0.897570i \(-0.645331\pi\)
0.997754 0.0669791i \(-0.0213361\pi\)
\(132\) 0 0
\(133\) −1.25670e6 2.88932e7i −0.0463182 1.06492i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.15280e7 2.39762e7i 1.37981 0.796634i 0.387674 0.921796i \(-0.373279\pi\)
0.992136 + 0.125163i \(0.0399453\pi\)
\(138\) 0 0
\(139\) 2.81496e7i 0.889038i −0.895769 0.444519i \(-0.853375\pi\)
0.895769 0.444519i \(-0.146625\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.71091e6 4.69544e6i −0.0775246 0.134277i
\(144\) 0 0
\(145\) −149851. 86516.4i −0.00408198 0.00235673i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2.96356e6 1.71101e6i −0.0733942 0.0423741i 0.462854 0.886435i \(-0.346825\pi\)
−0.536248 + 0.844060i \(0.680159\pi\)
\(150\) 0 0
\(151\) −1.47357e7 2.55229e7i −0.348297 0.603269i 0.637650 0.770326i \(-0.279907\pi\)
−0.985947 + 0.167058i \(0.946573\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.53869e6i 0.119467i
\(156\) 0 0
\(157\) −5.76835e7 + 3.33036e7i −1.18961 + 0.686819i −0.958217 0.286042i \(-0.907660\pi\)
−0.231388 + 0.972861i \(0.574327\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.63056e6 + 3.74887e7i 0.0307926 + 0.707962i
\(162\) 0 0
\(163\) 4.48038e7 7.76025e7i 0.810324 1.40352i −0.102314 0.994752i \(-0.532625\pi\)
0.912638 0.408770i \(-0.134042\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 9.83745e7 1.63446 0.817231 0.576310i \(-0.195508\pi\)
0.817231 + 0.576310i \(0.195508\pi\)
\(168\) 0 0
\(169\) 5.91174e7 0.942133
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.35455e7 2.34615e7i 0.198899 0.344503i −0.749273 0.662262i \(-0.769597\pi\)
0.948172 + 0.317758i \(0.102930\pi\)
\(174\) 0 0
\(175\) −3.19619e7 + 6.13734e7i −0.450816 + 0.865659i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.09526e7 2.36440e7i 0.533698 0.308131i −0.208823 0.977953i \(-0.566963\pi\)
0.742521 + 0.669823i \(0.233630\pi\)
\(180\) 0 0
\(181\) 3.98951e6i 0.0500086i −0.999687 0.0250043i \(-0.992040\pi\)
0.999687 0.0250043i \(-0.00795994\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.05434e7 1.82617e7i −0.122428 0.212051i
\(186\) 0 0
\(187\) −8.46680e7 4.88831e7i −0.946834 0.546655i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −5.42463e7 3.13191e7i −0.563317 0.325231i 0.191159 0.981559i \(-0.438776\pi\)
−0.754476 + 0.656328i \(0.772109\pi\)
\(192\) 0 0
\(193\) 1.09529e7 + 1.89710e7i 0.109668 + 0.189950i 0.915636 0.402009i \(-0.131688\pi\)
−0.805968 + 0.591959i \(0.798355\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.54338e7i 0.516586i −0.966067 0.258293i \(-0.916840\pi\)
0.966067 0.258293i \(-0.0831600\pi\)
\(198\) 0 0
\(199\) 8.58186e7 4.95474e7i 0.771962 0.445692i −0.0616124 0.998100i \(-0.519624\pi\)
0.833574 + 0.552408i \(0.186291\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3.05956e6 1.94844e6i 0.0256698 0.0163475i
\(204\) 0 0
\(205\) −259409. + 449309.i −0.00210303 + 0.00364256i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −9.06759e7 −0.687036
\(210\) 0 0
\(211\) −4.96415e7 −0.363795 −0.181897 0.983318i \(-0.558224\pi\)
−0.181897 + 0.983318i \(0.558224\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 6.99535e6 1.21163e7i 0.0480037 0.0831449i
\(216\) 0 0
\(217\) −1.02980e8 5.36298e7i −0.684139 0.356284i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −5.67034e7 + 3.27377e7i −0.353375 + 0.204021i
\(222\) 0 0
\(223\) 1.75096e8i 1.05733i 0.848832 + 0.528663i \(0.177306\pi\)
−0.848832 + 0.528663i \(0.822694\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 6.87276e7 + 1.19040e8i 0.389978 + 0.675463i 0.992446 0.122681i \(-0.0391491\pi\)
−0.602468 + 0.798143i \(0.705816\pi\)
\(228\) 0 0
\(229\) 1.46965e8 + 8.48504e7i 0.808705 + 0.466906i 0.846506 0.532379i \(-0.178702\pi\)
−0.0378008 + 0.999285i \(0.512035\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2.06488e7 1.19216e7i −0.106942 0.0617431i 0.445575 0.895245i \(-0.352999\pi\)
−0.552517 + 0.833502i \(0.686333\pi\)
\(234\) 0 0
\(235\) 2.04216e7 + 3.53713e7i 0.102649 + 0.177793i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.59527e8i 0.755861i 0.925834 + 0.377930i \(0.123364\pi\)
−0.925834 + 0.377930i \(0.876636\pi\)
\(240\) 0 0
\(241\) −1.01027e8 + 5.83280e7i −0.464920 + 0.268422i −0.714111 0.700033i \(-0.753169\pi\)
0.249191 + 0.968454i \(0.419835\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.04390e7 + 2.92106e7i 0.0887930 + 0.126899i
\(246\) 0 0
\(247\) −3.03635e7 + 5.25911e7i −0.128207 + 0.222061i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −3.09877e8 −1.23689 −0.618446 0.785827i \(-0.712237\pi\)
−0.618446 + 0.785827i \(0.712237\pi\)
\(252\) 0 0
\(253\) 1.17651e8 0.456745
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.73890e8 + 3.01186e8i −0.639012 + 1.10680i 0.346638 + 0.937999i \(0.387323\pi\)
−0.985650 + 0.168802i \(0.946010\pi\)
\(258\) 0 0
\(259\) 4.41626e8 1.92084e7i 1.57945 0.0686977i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −4.88562e8 + 2.82072e8i −1.65605 + 0.956124i −0.681546 + 0.731775i \(0.738692\pi\)
−0.974509 + 0.224348i \(0.927975\pi\)
\(264\) 0 0
\(265\) 8.89918e7i 0.293758i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −4.46286e7 7.72990e7i −0.139791 0.242126i 0.787626 0.616153i \(-0.211310\pi\)
−0.927418 + 0.374028i \(0.877976\pi\)
\(270\) 0 0
\(271\) 2.75949e8 + 1.59319e8i 0.842241 + 0.486268i 0.858025 0.513607i \(-0.171691\pi\)
−0.0157845 + 0.999875i \(0.505025\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.87890e8 + 1.08478e8i 0.544803 + 0.314542i
\(276\) 0 0
\(277\) 9.35365e7 + 1.62010e8i 0.264425 + 0.457997i 0.967413 0.253205i \(-0.0814846\pi\)
−0.702988 + 0.711202i \(0.748151\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 7.05899e7i 0.189789i −0.995487 0.0948944i \(-0.969749\pi\)
0.995487 0.0948944i \(-0.0302513\pi\)
\(282\) 0 0
\(283\) 4.70136e7 2.71433e7i 0.123302 0.0711885i −0.437080 0.899422i \(-0.643987\pi\)
0.560383 + 0.828234i \(0.310654\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −5.84215e6 9.17370e6i −0.0145877 0.0229064i
\(288\) 0 0
\(289\) −3.85156e8 + 6.67109e8i −0.938629 + 1.62575i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3.51658e8 −0.816739 −0.408370 0.912817i \(-0.633903\pi\)
−0.408370 + 0.912817i \(0.633903\pi\)
\(294\) 0 0
\(295\) −4.83254e7 −0.109597
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3.93963e7 6.82364e7i 0.0852327 0.147627i
\(300\) 0 0
\(301\) 1.57543e8 + 2.47383e8i 0.332978 + 0.522862i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.14603e8 + 6.61662e7i −0.231285 + 0.133532i
\(306\) 0 0
\(307\) 1.07950e8i 0.212932i 0.994316 + 0.106466i \(0.0339535\pi\)
−0.994316 + 0.106466i \(0.966047\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −8.09487e7 1.40207e8i −0.152598 0.264307i 0.779584 0.626298i \(-0.215431\pi\)
−0.932182 + 0.361991i \(0.882097\pi\)
\(312\) 0 0
\(313\) −2.62241e8 1.51405e8i −0.483388 0.279084i 0.238439 0.971157i \(-0.423364\pi\)
−0.721827 + 0.692073i \(0.756697\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.55921e8 2.05491e8i −0.627548 0.362315i 0.152254 0.988341i \(-0.451347\pi\)
−0.779802 + 0.626027i \(0.784680\pi\)
\(318\) 0 0
\(319\) −5.68641e6 9.84915e6i −0.00980778 0.0169876i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.09503e9i 1.80807i
\(324\) 0 0
\(325\) 1.25833e8 7.26496e7i 0.203330 0.117393i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −8.55391e8 + 3.72050e7i −1.32428 + 0.0575991i
\(330\) 0 0
\(331\) 2.90842e8 5.03754e8i 0.440818 0.763520i −0.556932 0.830558i \(-0.688022\pi\)
0.997750 + 0.0670382i \(0.0213549\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4.35262e7 −0.0632548
\(336\) 0 0
\(337\) 9.16894e8 1.30501 0.652506 0.757784i \(-0.273718\pi\)
0.652506 + 0.757784i \(0.273718\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.82019e8 + 3.15266e8i −0.248586 + 0.430563i
\(342\) 0 0
\(343\) −7.41014e8 + 9.71811e7i −0.991510 + 0.130033i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8.92103e8 5.15056e8i 1.14620 0.661761i 0.198245 0.980153i \(-0.436476\pi\)
0.947959 + 0.318391i \(0.103143\pi\)
\(348\) 0 0
\(349\) 1.08302e9i 1.36379i 0.731452 + 0.681893i \(0.238843\pi\)
−0.731452 + 0.681893i \(0.761157\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.38235e8 2.39430e8i −0.167266 0.289713i 0.770192 0.637812i \(-0.220160\pi\)
−0.937458 + 0.348100i \(0.886827\pi\)
\(354\) 0 0
\(355\) −8.80959e7 5.08622e7i −0.104510 0.0603387i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.58248e8 9.13644e7i −0.180512 0.104219i 0.407021 0.913419i \(-0.366568\pi\)
−0.587533 + 0.809200i \(0.699901\pi\)
\(360\) 0 0
\(361\) 6.08694e7 + 1.05429e8i 0.0680964 + 0.117946i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 9.74291e7i 0.104873i
\(366\) 0 0
\(367\) 2.08340e8 1.20285e8i 0.220010 0.127023i −0.385945 0.922522i \(-0.626125\pi\)
0.605955 + 0.795499i \(0.292791\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.65461e9 + 8.61685e8i 1.68224 + 0.876072i
\(372\) 0 0
\(373\) 2.45693e8 4.25552e8i 0.245138 0.424592i −0.717032 0.697040i \(-0.754500\pi\)
0.962170 + 0.272448i \(0.0878333\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −7.61654e6 −0.00732088
\(378\) 0 0
\(379\) 2.08396e8 0.196631 0.0983157 0.995155i \(-0.468655\pi\)
0.0983157 + 0.995155i \(0.468655\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −1.53213e7 + 2.65373e7i −0.0139348 + 0.0241358i −0.872909 0.487884i \(-0.837769\pi\)
0.858974 + 0.512019i \(0.171102\pi\)
\(384\) 0 0
\(385\) 9.42833e7 6.00431e7i 0.0842020 0.0536229i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −8.45940e8 + 4.88404e8i −0.728645 + 0.420683i −0.817926 0.575323i \(-0.804876\pi\)
0.0892814 + 0.996006i \(0.471543\pi\)
\(390\) 0 0
\(391\) 1.42079e9i 1.20201i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.96898e7 + 3.41037e7i 0.0160750 + 0.0278428i
\(396\) 0 0
\(397\) −1.12127e9 6.47367e8i −0.899383 0.519259i −0.0223827 0.999749i \(-0.507125\pi\)
−0.877000 + 0.480491i \(0.840459\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.33786e8 1.92711e8i −0.258501 0.149246i 0.365150 0.930949i \(-0.381018\pi\)
−0.623651 + 0.781703i \(0.714351\pi\)
\(402\) 0 0
\(403\) 1.21901e8 + 2.11138e8i 0.0927766 + 0.160694i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.38596e9i 1.01899i
\(408\) 0 0
\(409\) −9.82181e8 + 5.67063e8i −0.709839 + 0.409826i −0.811001 0.585044i \(-0.801077\pi\)
0.101162 + 0.994870i \(0.467744\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 4.67923e8 8.98507e8i 0.326850 0.627619i
\(414\) 0 0
\(415\) 1.00543e8 1.74145e8i 0.0690530 0.119603i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.39165e9 0.924233 0.462116 0.886819i \(-0.347090\pi\)
0.462116 + 0.886819i \(0.347090\pi\)
\(420\) 0 0
\(421\) −2.39488e9 −1.56421 −0.782107 0.623145i \(-0.785855\pi\)
−0.782107 + 0.623145i \(0.785855\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.31001e9 2.26901e9i 0.827780 1.43376i
\(426\) 0 0
\(427\) −1.20544e8 2.77147e9i −0.0749289 1.72271i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.66289e9 1.53742e9i 1.60208 0.924959i 0.611004 0.791627i \(-0.290766\pi\)
0.991071 0.133332i \(-0.0425676\pi\)
\(432\) 0 0
\(433\) 1.66956e9i 0.988315i 0.869372 + 0.494158i \(0.164523\pi\)
−0.869372 + 0.494158i \(0.835477\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −6.58873e8 1.14120e9i −0.377673 0.654150i
\(438\) 0 0
\(439\) 5.41459e8 + 3.12611e8i 0.305450 + 0.176351i 0.644888 0.764277i \(-0.276904\pi\)
−0.339439 + 0.940628i \(0.610237\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.19878e9 + 6.92117e8i 0.655130 + 0.378239i 0.790419 0.612567i \(-0.209863\pi\)
−0.135289 + 0.990806i \(0.543196\pi\)
\(444\) 0 0
\(445\) −2.15301e8 3.72912e8i −0.115821 0.200607i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1.09094e9i 0.568772i 0.958710 + 0.284386i \(0.0917897\pi\)
−0.958710 + 0.284386i \(0.908210\pi\)
\(450\) 0 0
\(451\) −2.95315e7 + 1.70500e7i −0.0151589 + 0.00875198i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −3.25293e6 7.47892e7i −0.00161896 0.0372219i
\(456\) 0 0
\(457\) 3.61198e8 6.25613e8i 0.177026 0.306619i −0.763834 0.645412i \(-0.776686\pi\)
0.940861 + 0.338794i \(0.110019\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.99228e9 −0.947103 −0.473552 0.880766i \(-0.657028\pi\)
−0.473552 + 0.880766i \(0.657028\pi\)
\(462\) 0 0
\(463\) 1.28043e9 0.599547 0.299774 0.954010i \(-0.403089\pi\)
0.299774 + 0.954010i \(0.403089\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.69659e9 2.93858e9i 0.770847 1.33515i −0.166252 0.986083i \(-0.553167\pi\)
0.937099 0.349063i \(-0.113500\pi\)
\(468\) 0 0
\(469\) 4.21453e8 8.09275e8i 0.188644 0.362236i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 7.96361e8 4.59779e8i 0.346016 0.199772i
\(474\) 0 0
\(475\) 2.43002e9i 1.04035i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2.14510e9 + 3.71542e9i 0.891812 + 1.54466i 0.837702 + 0.546128i \(0.183899\pi\)
0.0541102 + 0.998535i \(0.482768\pi\)
\(480\) 0 0
\(481\) −8.03841e8 4.64098e8i −0.329354 0.190152i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.95556e8 1.70639e8i −0.117637 0.0679177i
\(486\) 0 0
\(487\) −2.28287e9 3.95405e9i −0.895633 1.55128i −0.833019 0.553244i \(-0.813390\pi\)
−0.0626142 0.998038i \(-0.519944\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2.37398e9i 0.905089i 0.891742 + 0.452545i \(0.149484\pi\)
−0.891742 + 0.452545i \(0.850516\pi\)
\(492\) 0 0
\(493\) −1.18941e8 + 6.86706e7i −0.0447061 + 0.0258111i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.79868e9 1.14547e9i 0.657215 0.418539i
\(498\) 0 0
\(499\) −1.51572e9 + 2.62530e9i −0.546092 + 0.945859i 0.452445 + 0.891792i \(0.350552\pi\)
−0.998537 + 0.0540667i \(0.982782\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −4.14489e8 −0.145219 −0.0726097 0.997360i \(-0.523133\pi\)
−0.0726097 + 0.997360i \(0.523133\pi\)
\(504\) 0 0
\(505\) 1.67058e8 0.0577227
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.25908e9 2.18079e9i 0.423196 0.732996i −0.573054 0.819517i \(-0.694242\pi\)
0.996250 + 0.0865209i \(0.0275749\pi\)
\(510\) 0 0
\(511\) 1.81149e9 + 9.43382e8i 0.600567 + 0.312762i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1.89905e8 + 1.09642e8i −0.0612648 + 0.0353712i
\(516\) 0 0
\(517\) 2.68448e9i 0.854364i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −2.49988e9 4.32992e9i −0.774439 1.34137i −0.935109 0.354360i \(-0.884699\pi\)
0.160670 0.987008i \(-0.448635\pi\)
\(522\) 0 0
\(523\) −2.84190e9 1.64077e9i −0.868667 0.501525i −0.00176184 0.999998i \(-0.500561\pi\)
−0.866905 + 0.498473i \(0.833894\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.80724e9 + 2.19811e9i 1.13311 + 0.654202i
\(528\) 0 0
\(529\) −8.47531e8 1.46797e9i −0.248921 0.431143i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2.28373e7i 0.00653279i
\(534\) 0 0
\(535\) 6.98588e8 4.03330e8i 0.197235 0.113873i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.03451e8 + 2.33438e9i 0.0559628 + 0.642112i
\(540\) 0 0
\(541\) −4.90462e8 + 8.49506e8i −0.133173 + 0.230662i −0.924898 0.380215i \(-0.875850\pi\)
0.791725 + 0.610877i \(0.209183\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −8.40739e8 −0.222471
\(546\) 0 0
\(547\) 3.59461e9 0.939065 0.469533 0.882915i \(-0.344422\pi\)
0.469533 + 0.882915i \(0.344422\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −6.36904e7 + 1.10315e8i −0.0162197 + 0.0280934i
\(552\) 0 0
\(553\) −8.24737e8 + 3.58717e7i −0.207385 + 0.00902016i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2.04811e9 1.18248e9i 0.502181 0.289934i −0.227433 0.973794i \(-0.573033\pi\)
0.729614 + 0.683859i \(0.239700\pi\)
\(558\) 0 0
\(559\) 6.15841e8i 0.149117i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −3.46203e9 5.99641e9i −0.817619 1.41616i −0.907432 0.420199i \(-0.861960\pi\)
0.0898129 0.995959i \(-0.471373\pi\)
\(564\) 0 0
\(565\) −5.68209e8 3.28056e8i −0.132537 0.0765205i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.69528e9 3.86552e9i −1.52362 0.879661i −0.999609 0.0279480i \(-0.991103\pi\)
−0.524008 0.851713i \(-0.675564\pi\)
\(570\) 0 0
\(571\) 1.26315e9 + 2.18784e9i 0.283941 + 0.491800i 0.972352 0.233521i \(-0.0750248\pi\)
−0.688411 + 0.725321i \(0.741691\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.15292e9i 0.691633i
\(576\) 0 0
\(577\) −4.84925e9 + 2.79972e9i −1.05089 + 0.606734i −0.922900 0.385040i \(-0.874187\pi\)
−0.127995 + 0.991775i \(0.540854\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 2.26433e9 + 3.55558e9i 0.478986 + 0.752133i
\(582\) 0 0
\(583\) 2.92455e9 5.06548e9i 0.611251 1.05872i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.61031e9 −0.328607 −0.164304 0.986410i \(-0.552538\pi\)
−0.164304 + 0.986410i \(0.552538\pi\)
\(588\) 0 0
\(589\) 4.07739e9 0.822202
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −3.22039e9 + 5.57787e9i −0.634186 + 1.09844i 0.352501 + 0.935811i \(0.385331\pi\)
−0.986687 + 0.162631i \(0.948002\pi\)
\(594\) 0 0
\(595\) −7.25096e8 1.13859e9i −0.141119 0.221594i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 7.37179e8 4.25611e8i 0.140146 0.0809131i −0.428288 0.903642i \(-0.640883\pi\)
0.568433 + 0.822729i \(0.307550\pi\)
\(600\) 0 0
\(601\) 7.56509e9i 1.42152i 0.703433 + 0.710761i \(0.251649\pi\)
−0.703433 + 0.710761i \(0.748351\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.46568e8 + 4.27069e8i 0.0452682 + 0.0784068i
\(606\) 0 0
\(607\) −1.78625e9 1.03129e9i −0.324178 0.187164i 0.329076 0.944304i \(-0.393263\pi\)
−0.653253 + 0.757140i \(0.726596\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.55697e9 + 8.98917e8i 0.276144 + 0.159432i
\(612\) 0 0
\(613\) 3.72749e9 + 6.45620e9i 0.653589 + 1.13205i 0.982246 + 0.187600i \(0.0600708\pi\)
−0.328657 + 0.944450i \(0.606596\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.52998e9i 1.11922i 0.828757 + 0.559608i \(0.189048\pi\)
−0.828757 + 0.559608i \(0.810952\pi\)
\(618\) 0 0
\(619\) 4.56575e9 2.63603e9i 0.773739 0.446718i −0.0604678 0.998170i \(-0.519259\pi\)
0.834207 + 0.551452i \(0.185926\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 9.01821e9 3.92245e8i 1.49421 0.0649904i
\(624\) 0 0
\(625\) −2.83390e9 + 4.90846e9i −0.464306 + 0.804202i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.67372e10 −2.68167
\(630\) 0 0
\(631\) 5.93765e9 0.940831 0.470416 0.882445i \(-0.344104\pi\)
0.470416 + 0.882445i \(0.344104\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −5.82311e8 + 1.00859e9i −0.0902499 + 0.156317i
\(636\) 0 0
\(637\) 1.42204e9 + 6.63684e8i 0.217984 + 0.101736i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −9.36252e9 + 5.40545e9i −1.40407 + 0.810642i −0.994808 0.101774i \(-0.967548\pi\)
−0.409265 + 0.912416i \(0.634215\pi\)
\(642\) 0 0
\(643\) 8.11643e9i 1.20400i 0.798496 + 0.602000i \(0.205629\pi\)
−0.798496 + 0.602000i \(0.794371\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5.21229e9 + 9.02796e9i 0.756596 + 1.31046i 0.944577 + 0.328290i \(0.106472\pi\)
−0.187981 + 0.982173i \(0.560194\pi\)
\(648\) 0 0
\(649\) −2.75072e9 1.58813e9i −0.394993 0.228049i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −7.58422e9 4.37875e9i −1.06590 0.615395i −0.138839 0.990315i \(-0.544337\pi\)
−0.927057 + 0.374920i \(0.877670\pi\)
\(654\) 0 0
\(655\) −6.20300e8 1.07439e9i −0.0862496 0.149389i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 8.30490e9i 1.13041i 0.824951 + 0.565204i \(0.191203\pi\)
−0.824951 + 0.565204i \(0.808797\pi\)
\(660\) 0 0
\(661\) 4.95141e8 2.85870e8i 0.0666843 0.0385002i −0.466287 0.884633i \(-0.654409\pi\)
0.532971 + 0.846133i \(0.321075\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.11042e9 5.78281e8i −0.146424 0.0762541i
\(666\) 0 0
\(667\) 8.26377e7 1.43133e8i 0.0107830 0.0186766i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −8.69772e9 −1.11142
\(672\) 0 0
\(673\) 9.17478e9 1.16023 0.580114 0.814536i \(-0.303008\pi\)
0.580114 + 0.814536i \(0.303008\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 4.13865e9 7.16835e9i 0.512623 0.887890i −0.487269 0.873252i \(-0.662007\pi\)
0.999893 0.0146381i \(-0.00465962\pi\)
\(678\) 0 0
\(679\) 6.03446e9 3.84297e9i 0.739766 0.471110i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −7.72121e8 + 4.45784e8i −0.0927285 + 0.0535368i −0.545647 0.838015i \(-0.683716\pi\)
0.452919 + 0.891552i \(0.350383\pi\)
\(684\) 0 0
\(685\) 2.07587e9i 0.246764i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.95862e9 3.39242e9i −0.228130 0.395132i
\(690\) 0 0
\(691\) 4.95007e8 + 2.85792e8i 0.0570739 + 0.0329516i 0.528265 0.849079i \(-0.322843\pi\)
−0.471192 + 0.882031i \(0.656176\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.05534e9 6.09299e8i −0.119246 0.0688468i
\(696\) 0 0
\(697\) 2.05900e8 + 3.56630e8i 0.0230326 + 0.0398935i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 5.60772e9i 0.614855i 0.951571 + 0.307428i \(0.0994682\pi\)
−0.951571 + 0.307428i \(0.900532\pi\)
\(702\) 0 0
\(703\) −1.34436e10 + 7.76168e9i −1.45939 + 0.842581i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.61758e9 + 3.10608e9i −0.172146 + 0.330555i
\(708\) 0 0
\(709\) −4.99219e9 + 8.64672e9i −0.526052 + 0.911149i 0.473487 + 0.880801i \(0.342995\pi\)
−0.999539 + 0.0303486i \(0.990338\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −5.29038e9 −0.546605
\(714\) 0 0
\(715\) −2.34711e8 −0.0240139
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 6.47450e9 1.12142e10i 0.649613 1.12516i −0.333602 0.942714i \(-0.608264\pi\)
0.983215 0.182449i \(-0.0584025\pi\)
\(720\) 0 0
\(721\) −1.99750e8 4.59250e9i −0.0198478 0.456327i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.63947e8 1.52390e8i 0.0257237 0.0148516i
\(726\) 0 0
\(727\) 1.58437e10i 1.52927i 0.644461 + 0.764637i \(0.277082\pi\)
−0.644461 + 0.764637i \(0.722918\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −5.55241e9 9.61706e9i −0.525740 0.910608i
\(732\) 0 0
\(733\) 1.19719e10 + 6.91198e9i 1.12279 + 0.648244i 0.942112 0.335298i \(-0.108837\pi\)
0.180680 + 0.983542i \(0.442170\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2.47754e9 1.43041e9i −0.227973 0.131621i
\(738\) 0 0
\(739\) −2.93942e9 5.09122e9i −0.267921 0.464052i 0.700404 0.713747i \(-0.253003\pi\)
−0.968325 + 0.249694i \(0.919670\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2.16143e10i 1.93321i 0.256268 + 0.966606i \(0.417507\pi\)
−0.256268 + 0.966606i \(0.582493\pi\)
\(744\) 0 0
\(745\) −1.28293e8 + 7.40698e7i −0.0113672 + 0.00656288i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 7.34804e8 + 1.68941e10i 0.0638977 + 1.46909i
\(750\) 0 0
\(751\) 2.47556e9 4.28779e9i 0.213272 0.369397i −0.739465 0.673195i \(-0.764921\pi\)
0.952737 + 0.303798i \(0.0982547\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −1.27582e9 −0.107888
\(756\) 0 0
\(757\) −8.29744e9 −0.695198 −0.347599 0.937643i \(-0.613003\pi\)
−0.347599 + 0.937643i \(0.613003\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6.06968e9 1.05130e10i 0.499252 0.864729i −0.500748 0.865593i \(-0.666942\pi\)
1.00000 0.000863849i \(0.000274972\pi\)
\(762\) 0 0
\(763\) 8.14067e9 1.56317e10i 0.663474 1.27401i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.84219e9 + 1.06359e9i −0.147418 + 0.0851120i
\(768\) 0 0
\(769\) 2.20938e9i 0.175198i −0.996156 0.0875989i \(-0.972081\pi\)
0.996156 0.0875989i \(-0.0279194\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −1.64144e9 2.84306e9i −0.127819 0.221390i 0.795012 0.606594i \(-0.207464\pi\)
−0.922831 + 0.385204i \(0.874131\pi\)
\(774\) 0 0
\(775\) −8.44879e9 4.87791e9i −0.651987 0.376425i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.30766e8 + 1.90968e8i 0.0250691 + 0.0144737i
\(780\) 0 0
\(781\) −3.34299e9 5.79022e9i −0.251105 0.434927i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2.88343e9i 0.212748i
\(786\) 0 0
\(787\) 3.49909e9 2.02020e9i 0.255884 0.147735i −0.366572 0.930390i \(-0.619468\pi\)
0.622456 + 0.782655i \(0.286135\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1.16013e10 7.38814e9i 0.833469 0.530784i
\(792\) 0 0
\(793\) −2.91250e9 + 5.04459e9i −0.207400 + 0.359228i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2.09339e10 −1.46469 −0.732346 0.680933i \(-0.761575\pi\)
−0.732346 + 0.680933i \(0.761575\pi\)
\(798\) 0 0
\(799\) 3.24185e10 2.24843
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 3.20183e9 5.54573e9i 0.218220 0.377968i
\(804\) 0 0
\(805\) 1.44076e9 + 7.50315e8i 0.0973431 + 0.0506942i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 2.25479e10 1.30181e10i 1.49722 0.864423i 0.497230 0.867619i \(-0.334351\pi\)
0.999995 + 0.00319580i \(0.00101726\pi\)
\(810\) 0 0
\(811\) 1.96611e10i 1.29430i 0.762364 + 0.647149i \(0.224039\pi\)
−0.762364 + 0.647149i \(0.775961\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1.93956e9 3.35942e9i −0.125502 0.217377i
\(816\) 0 0
\(817\) −8.91960e9 5.14973e9i −0.572227 0.330375i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.79598e10 + 1.03691e10i 1.13266 + 0.653942i 0.944603 0.328216i \(-0.106447\pi\)
0.188058 + 0.982158i \(0.439781\pi\)
\(822\) 0 0
\(823\) −1.14202e10 1.97803e10i −0.714123 1.23690i −0.963297 0.268438i \(-0.913492\pi\)
0.249174 0.968459i \(-0.419841\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.34616e10i 0.827612i 0.910365 + 0.413806i \(0.135801\pi\)
−0.910365 + 0.413806i \(0.864199\pi\)
\(828\) 0 0
\(829\) −1.51871e10 + 8.76825e9i −0.925833 + 0.534530i −0.885491 0.464656i \(-0.846178\pi\)
−0.0403417 + 0.999186i \(0.512845\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2.81906e10 2.45693e9i 1.68984 0.147277i
\(834\) 0 0
\(835\) 2.12932e9 3.68809e9i 0.126572 0.219229i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −8.28377e9 −0.484240 −0.242120 0.970246i \(-0.577843\pi\)
−0.242120 + 0.970246i \(0.577843\pi\)
\(840\) 0 0
\(841\) 1.72339e10 0.999074
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.27960e9 2.21633e9i 0.0729585 0.126368i
\(846\) 0 0
\(847\) −1.03279e10 + 4.49208e8i −0.584009 + 0.0254013i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1.74430e10 1.00707e10i 0.970213 0.560153i
\(852\) 0 0
\(853\) 1.38127e8i 0.00762006i −0.999993 0.00381003i \(-0.998787\pi\)
0.999993 0.00381003i \(-0.00121277\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.27091e10 2.20128e10i −0.689734 1.19465i −0.971924 0.235296i \(-0.924394\pi\)
0.282190 0.959359i \(-0.408939\pi\)
\(858\) 0 0
\(859\) −1.93666e10 1.11813e10i −1.04250 0.601889i −0.121961 0.992535i \(-0.538918\pi\)
−0.920541 + 0.390646i \(0.872252\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.93553e10 1.11748e10i −1.02509 0.591835i −0.109515 0.993985i \(-0.534930\pi\)
−0.915574 + 0.402150i \(0.868263\pi\)
\(864\) 0 0
\(865\) −5.86385e8 1.01565e9i −0.0308054 0.0533565i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2.58828e9i 0.133796i
\(870\) 0 0
\(871\) −1.65924e9 + 9.57965e8i −0.0850837 + 0.0491231i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 3.25773e9 + 5.11548e9i 0.164394 + 0.258142i
\(876\) 0 0
\(877\) 1.79827e10 3.11469e10i 0.900235 1.55925i 0.0730458 0.997329i \(-0.476728\pi\)
0.827189 0.561924i \(-0.189939\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1.26706e9 −0.0624283 −0.0312142 0.999513i \(-0.509937\pi\)
−0.0312142 + 0.999513i \(0.509937\pi\)
\(882\) 0 0
\(883\) −3.76489e10 −1.84030 −0.920152 0.391561i \(-0.871935\pi\)
−0.920152 + 0.391561i \(0.871935\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.64364e10 2.84687e10i 0.790813 1.36973i −0.134651 0.990893i \(-0.542991\pi\)
0.925464 0.378835i \(-0.123675\pi\)
\(888\) 0 0
\(889\) −1.31142e10 2.05928e10i −0.626018 0.983011i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.60391e10 1.50337e10i 1.22362 0.706456i
\(894\) 0 0
\(895\) 2.04710e9i 0.0954462i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.55699e8 + 4.42883e8i 0.0117373 + 0.0203297i
\(900\) 0 0
\(901\) −6.11720e10 3.53177e10i −2.78622 1.60863i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1.49568e8 8.63531e7i −0.00670762 0.00387265i
\(906\) 0 0
\(907\) 1.72901e10 + 2.99473e10i 0.769434 + 1.33270i 0.937870 + 0.346986i \(0.112795\pi\)
−0.168436 + 0.985713i \(0.553872\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 2.19186e9i 0.0960502i 0.998846 + 0.0480251i \(0.0152927\pi\)
−0.998846 + 0.0480251i \(0.984707\pi\)
\(912\) 0 0
\(913\) 1.14459e10 6.60831e9i 0.497741 0.287371i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.59822e10 1.13009e9i 1.11271 0.0483972i
\(918\) 0 0
\(919\) −1.51503e10 + 2.62411e10i −0.643897 + 1.11526i 0.340658 + 0.940187i \(0.389350\pi\)
−0.984555 + 0.175075i \(0.943983\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −4.47769e9 −0.187434
\(924\) 0 0
\(925\) 3.71422e10 1.54302
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.64848e10 2.85525e10i 0.674573 1.16839i −0.302021 0.953301i \(-0.597661\pi\)
0.976594 0.215093i \(-0.0690055\pi\)
\(930\) 0 0
\(931\) 2.15038e10 1.50465e10i 0.873356 0.611099i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −3.66529e9 + 2.11615e9i −0.146645 + 0.0846655i
\(936\) 0 0
\(937\) 1.83470e10i 0.728580i 0.931286 + 0.364290i \(0.118688\pi\)
−0.931286 + 0.364290i \(0.881312\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 6.38257e9 + 1.10549e10i 0.249708 + 0.432507i 0.963445 0.267907i \(-0.0863321\pi\)
−0.713737 + 0.700414i \(0.752999\pi\)
\(942\) 0 0
\(943\) −4.29165e8 2.47779e8i −0.0166661 0.00962217i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4.95416e9 2.86029e9i −0.189559 0.109442i 0.402217 0.915544i \(-0.368240\pi\)
−0.591776 + 0.806102i \(0.701573\pi\)
\(948\) 0 0
\(949\) −2.14431e9 3.71406e9i −0.0814434 0.141064i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 3.08823e10i 1.15580i 0.816106 + 0.577902i \(0.196128\pi\)
−0.816106 + 0.577902i \(0.803872\pi\)
\(954\) 0 0
\(955\) −2.34833e9 + 1.35581e9i −0.0872462 + 0.0503716i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3.85963e10 + 2.01001e10i 1.41312 + 0.735924i
\(960\) 0 0
\(961\) −5.57152e9 + 9.65015e9i −0.202508 + 0.350754i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 9.48304e8 0.0339705
\(966\) 0 0
\(967\) 2.58173e10 0.918161 0.459080 0.888395i \(-0.348179\pi\)
0.459080 + 0.888395i \(0.348179\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 4.25087e9 7.36273e9i 0.149008 0.258090i −0.781853 0.623463i \(-0.785725\pi\)
0.930861 + 0.365373i \(0.119059\pi\)
\(972\) 0 0
\(973\) 2.15472e10 1.37220e10i 0.749886 0.477555i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −2.42421e10 + 1.39962e10i −0.831646 + 0.480151i −0.854416 0.519590i \(-0.826085\pi\)
0.0227699 + 0.999741i \(0.492751\pi\)
\(978\) 0 0
\(979\) 2.83019e10i 0.963999i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −1.86631e10 3.23255e10i −0.626682 1.08545i −0.988213 0.153085i \(-0.951079\pi\)
0.361531 0.932360i \(-0.382254\pi\)
\(984\) 0 0
\(985\) −2.07823e9 1.19987e9i −0.0692894 0.0400043i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.15731e10 + 6.68173e9i 0.380419 + 0.219635i
\(990\) 0 0
\(991\) −2.79170e10 4.83536e10i −0.911194 1.57823i −0.812381 0.583128i \(-0.801829\pi\)
−0.0988131 0.995106i \(-0.531505\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 4.28982e9i 0.138057i
\(996\) 0 0
\(997\) 1.10510e10 6.38028e9i 0.353157 0.203895i −0.312918 0.949780i \(-0.601307\pi\)
0.666075 + 0.745885i \(0.267973\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.8.t.a.89.10 yes 36
3.2 odd 2 inner 252.8.t.a.89.9 yes 36
7.3 odd 6 inner 252.8.t.a.17.9 36
21.17 even 6 inner 252.8.t.a.17.10 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.8.t.a.17.9 36 7.3 odd 6 inner
252.8.t.a.17.10 yes 36 21.17 even 6 inner
252.8.t.a.89.9 yes 36 3.2 odd 2 inner
252.8.t.a.89.10 yes 36 1.1 even 1 trivial