L(s) = 1 | + (−0.222 + 0.974i)2-s + (0.900 − 0.433i)3-s + (0.222 + 0.974i)6-s + (0.900 − 0.433i)7-s + (−0.623 + 0.781i)8-s + (0.623 − 0.781i)9-s + (0.623 + 0.781i)11-s + (−0.623 − 0.781i)13-s + (0.222 + 0.974i)14-s + (−0.623 − 0.781i)16-s + 17-s + (0.623 + 0.781i)18-s + (0.623 − 0.781i)21-s + (−0.900 + 0.433i)22-s + (−0.222 + 0.974i)24-s + (−0.900 − 0.433i)25-s + ⋯ |
L(s) = 1 | + (−0.222 + 0.974i)2-s + (0.900 − 0.433i)3-s + (0.222 + 0.974i)6-s + (0.900 − 0.433i)7-s + (−0.623 + 0.781i)8-s + (0.623 − 0.781i)9-s + (0.623 + 0.781i)11-s + (−0.623 − 0.781i)13-s + (0.222 + 0.974i)14-s + (−0.623 − 0.781i)16-s + 17-s + (0.623 + 0.781i)18-s + (0.623 − 0.781i)21-s + (−0.900 + 0.433i)22-s + (−0.222 + 0.974i)24-s + (−0.900 − 0.433i)25-s + ⋯ |
Λ(s)=(=(2523s/2ΓC(s)L(s)(0.620−0.784i)Λ(1−s)
Λ(s)=(=(2523s/2ΓC(s)L(s)(0.620−0.784i)Λ(1−s)
Degree: |
2 |
Conductor: |
2523
= 3⋅292
|
Sign: |
0.620−0.784i
|
Analytic conductor: |
1.25914 |
Root analytic conductor: |
1.12211 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2523(236,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2523, ( :0), 0.620−0.784i)
|
Particular Values
L(21) |
≈ |
1.779894756 |
L(21) |
≈ |
1.779894756 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.900+0.433i)T |
| 29 | 1 |
good | 2 | 1+(0.222−0.974i)T+(−0.900−0.433i)T2 |
| 5 | 1+(0.900+0.433i)T2 |
| 7 | 1+(−0.900+0.433i)T+(0.623−0.781i)T2 |
| 11 | 1+(−0.623−0.781i)T+(−0.222+0.974i)T2 |
| 13 | 1+(0.623+0.781i)T+(−0.222+0.974i)T2 |
| 17 | 1−T+T2 |
| 19 | 1+(−0.623−0.781i)T2 |
| 23 | 1+(0.900−0.433i)T2 |
| 31 | 1+(0.900+0.433i)T2 |
| 37 | 1+(0.222+0.974i)T2 |
| 41 | 1+2T+T2 |
| 43 | 1+(0.900−0.433i)T2 |
| 47 | 1+(−0.623−0.781i)T+(−0.222+0.974i)T2 |
| 53 | 1+(0.900+0.433i)T2 |
| 59 | 1−T2 |
| 61 | 1+(−0.623+0.781i)T2 |
| 67 | 1+(0.623−0.781i)T+(−0.222−0.974i)T2 |
| 71 | 1+(0.222−0.974i)T2 |
| 73 | 1+(0.900−0.433i)T2 |
| 79 | 1+(0.222+0.974i)T2 |
| 83 | 1+(−0.623−0.781i)T2 |
| 89 | 1+(0.222−0.974i)T+(−0.900−0.433i)T2 |
| 97 | 1+(−0.623−0.781i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.895257649294070106431496744333, −8.115360628252380384412767805033, −7.69820461110891227431018528694, −7.18934936123385080128043644076, −6.40868037634175113343799721545, −5.44804104239928780293585493216, −4.54058348087856805188807201916, −3.48980652330490030812847950301, −2.45922063554629742235526816478, −1.46367105230593812241287451839,
1.50422041062164268881109885976, 2.12464774612047355958199990126, 3.19619537241012289496920419142, 3.80782940858434823116273448153, 4.83393174029117698606661653496, 5.74942279839492074761531418050, 6.83235317800709142146737978998, 7.67810613725052889893878550109, 8.529666158509491563763641689339, 9.062984084818235692144053012169