L(s) = 1 | + (−0.222 + 0.974i)2-s + (0.900 − 0.433i)3-s + (0.222 + 0.974i)6-s + (0.900 − 0.433i)7-s + (−0.623 + 0.781i)8-s + (0.623 − 0.781i)9-s + (0.623 + 0.781i)11-s + (−0.623 − 0.781i)13-s + (0.222 + 0.974i)14-s + (−0.623 − 0.781i)16-s + 17-s + (0.623 + 0.781i)18-s + (0.623 − 0.781i)21-s + (−0.900 + 0.433i)22-s + (−0.222 + 0.974i)24-s + (−0.900 − 0.433i)25-s + ⋯ |
L(s) = 1 | + (−0.222 + 0.974i)2-s + (0.900 − 0.433i)3-s + (0.222 + 0.974i)6-s + (0.900 − 0.433i)7-s + (−0.623 + 0.781i)8-s + (0.623 − 0.781i)9-s + (0.623 + 0.781i)11-s + (−0.623 − 0.781i)13-s + (0.222 + 0.974i)14-s + (−0.623 − 0.781i)16-s + 17-s + (0.623 + 0.781i)18-s + (0.623 − 0.781i)21-s + (−0.900 + 0.433i)22-s + (−0.222 + 0.974i)24-s + (−0.900 − 0.433i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.620 - 0.784i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.620 - 0.784i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.779894756\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.779894756\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.900 + 0.433i)T \) |
| 29 | \( 1 \) |
good | 2 | \( 1 + (0.222 - 0.974i)T + (-0.900 - 0.433i)T^{2} \) |
| 5 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 7 | \( 1 + (-0.900 + 0.433i)T + (0.623 - 0.781i)T^{2} \) |
| 11 | \( 1 + (-0.623 - 0.781i)T + (-0.222 + 0.974i)T^{2} \) |
| 13 | \( 1 + (0.623 + 0.781i)T + (-0.222 + 0.974i)T^{2} \) |
| 17 | \( 1 - T + T^{2} \) |
| 19 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 23 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 31 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 37 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 41 | \( 1 + 2T + T^{2} \) |
| 43 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 47 | \( 1 + (-0.623 - 0.781i)T + (-0.222 + 0.974i)T^{2} \) |
| 53 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 67 | \( 1 + (0.623 - 0.781i)T + (-0.222 - 0.974i)T^{2} \) |
| 71 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 73 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 79 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 83 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 89 | \( 1 + (0.222 - 0.974i)T + (-0.900 - 0.433i)T^{2} \) |
| 97 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.895257649294070106431496744333, −8.115360628252380384412767805033, −7.69820461110891227431018528694, −7.18934936123385080128043644076, −6.40868037634175113343799721545, −5.44804104239928780293585493216, −4.54058348087856805188807201916, −3.48980652330490030812847950301, −2.45922063554629742235526816478, −1.46367105230593812241287451839,
1.50422041062164268881109885976, 2.12464774612047355958199990126, 3.19619537241012289496920419142, 3.80782940858434823116273448153, 4.83393174029117698606661653496, 5.74942279839492074761531418050, 6.83235317800709142146737978998, 7.67810613725052889893878550109, 8.529666158509491563763641689339, 9.062984084818235692144053012169