Properties

Label 2523.1.h.a
Level 25232523
Weight 11
Character orbit 2523.h
Analytic conductor 1.2591.259
Analytic rank 00
Dimension 66
Projective image D3D_{3}
CM discriminant -87
Inner twists 1212

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2523,1,Mod(236,2523)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2523, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([7, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2523.236");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2523=3292 2523 = 3 \cdot 29^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2523.h (of order 1414, degree 66, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.259141026871.25914102687
Analytic rank: 00
Dimension: 66
Coefficient field: Q(ζ14)\Q(\zeta_{14})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6x5+x4x3+x2x+1 x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 87)
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.87.1
Artin image: S3×C14S_3\times C_{14}
Artin field: Galois closure of Q[x]/(x42)\mathbb{Q}[x]/(x^{42} - \cdots)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+ζ146q2ζ142q3+ζ14q6ζ142q7ζ144q8+ζ144q9ζ143q11+ζ143q13+ζ14q14++q99+O(q100) q + \zeta_{14}^{6} q^{2} - \zeta_{14}^{2} q^{3} + \zeta_{14} q^{6} - \zeta_{14}^{2} q^{7} - \zeta_{14}^{4} q^{8} + \zeta_{14}^{4} q^{9} - \zeta_{14}^{3} q^{11} + \zeta_{14}^{3} q^{13} + \zeta_{14} q^{14} + \cdots + q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6qq2+q3+q6+q7+q8q9q11+q13+q14+q16+6q17q18q21q22q24q25+q26+q27+q33q34q39++6q99+O(q100) 6 q - q^{2} + q^{3} + q^{6} + q^{7} + q^{8} - q^{9} - q^{11} + q^{13} + q^{14} + q^{16} + 6 q^{17} - q^{18} - q^{21} - q^{22} - q^{24} - q^{25} + q^{26} + q^{27} + q^{33} - q^{34} - q^{39}+ \cdots + 6 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2523Z)×\left(\mathbb{Z}/2523\mathbb{Z}\right)^\times.

nn 842842 16841684
χ(n)\chi(n) 1-1 ζ145\zeta_{14}^{5}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
236.1
0.222521 + 0.974928i
0.222521 0.974928i
−0.623490 + 0.781831i
−0.623490 0.781831i
0.900969 + 0.433884i
0.900969 0.433884i
−0.222521 + 0.974928i 0.900969 0.433884i 0 0 0.222521 + 0.974928i 0.900969 0.433884i −0.623490 + 0.781831i 0.623490 0.781831i 0
1037.1 −0.222521 0.974928i 0.900969 + 0.433884i 0 0 0.222521 0.974928i 0.900969 + 0.433884i −0.623490 0.781831i 0.623490 + 0.781831i 0
1745.1 0.623490 + 0.781831i 0.222521 + 0.974928i 0 0 −0.623490 + 0.781831i 0.222521 + 0.974928i 0.900969 0.433884i −0.900969 + 0.433884i 0
1949.1 0.623490 0.781831i 0.222521 0.974928i 0 0 −0.623490 0.781831i 0.222521 0.974928i 0.900969 + 0.433884i −0.900969 0.433884i 0
1952.1 −0.900969 + 0.433884i −0.623490 0.781831i 0 0 0.900969 + 0.433884i −0.623490 0.781831i 0.222521 0.974928i −0.222521 + 0.974928i 0
2333.1 −0.900969 0.433884i −0.623490 + 0.781831i 0 0 0.900969 0.433884i −0.623490 + 0.781831i 0.222521 + 0.974928i −0.222521 0.974928i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 236.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
87.d odd 2 1 CM by Q(87)\Q(\sqrt{-87})
29.d even 7 5 inner
87.h odd 14 5 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2523.1.h.a 6
3.b odd 2 1 2523.1.h.b 6
29.b even 2 1 2523.1.h.b 6
29.c odd 4 2 2523.1.j.b 12
29.d even 7 1 87.1.d.b yes 1
29.d even 7 5 inner 2523.1.h.a 6
29.e even 14 1 87.1.d.a 1
29.e even 14 5 2523.1.h.b 6
29.f odd 28 2 2523.1.b.b 2
29.f odd 28 10 2523.1.j.b 12
87.d odd 2 1 CM 2523.1.h.a 6
87.f even 4 2 2523.1.j.b 12
87.h odd 14 1 87.1.d.b yes 1
87.h odd 14 5 inner 2523.1.h.a 6
87.j odd 14 1 87.1.d.a 1
87.j odd 14 5 2523.1.h.b 6
87.k even 28 2 2523.1.b.b 2
87.k even 28 10 2523.1.j.b 12
116.h odd 14 1 1392.1.i.a 1
116.j odd 14 1 1392.1.i.b 1
145.l even 14 1 2175.1.h.b 1
145.n even 14 1 2175.1.h.a 1
145.p odd 28 2 2175.1.b.b 2
145.q odd 28 2 2175.1.b.a 2
261.q even 21 2 2349.1.h.a 2
261.t odd 42 2 2349.1.h.b 2
261.u even 42 2 2349.1.h.b 2
261.v odd 42 2 2349.1.h.a 2
348.s even 14 1 1392.1.i.a 1
348.t even 14 1 1392.1.i.b 1
435.w odd 14 1 2175.1.h.b 1
435.bb odd 14 1 2175.1.h.a 1
435.bg even 28 2 2175.1.b.b 2
435.bj even 28 2 2175.1.b.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
87.1.d.a 1 29.e even 14 1
87.1.d.a 1 87.j odd 14 1
87.1.d.b yes 1 29.d even 7 1
87.1.d.b yes 1 87.h odd 14 1
1392.1.i.a 1 116.h odd 14 1
1392.1.i.a 1 348.s even 14 1
1392.1.i.b 1 116.j odd 14 1
1392.1.i.b 1 348.t even 14 1
2175.1.b.a 2 145.q odd 28 2
2175.1.b.a 2 435.bj even 28 2
2175.1.b.b 2 145.p odd 28 2
2175.1.b.b 2 435.bg even 28 2
2175.1.h.a 1 145.n even 14 1
2175.1.h.a 1 435.bb odd 14 1
2175.1.h.b 1 145.l even 14 1
2175.1.h.b 1 435.w odd 14 1
2349.1.h.a 2 261.q even 21 2
2349.1.h.a 2 261.v odd 42 2
2349.1.h.b 2 261.t odd 42 2
2349.1.h.b 2 261.u even 42 2
2523.1.b.b 2 29.f odd 28 2
2523.1.b.b 2 87.k even 28 2
2523.1.h.a 6 1.a even 1 1 trivial
2523.1.h.a 6 29.d even 7 5 inner
2523.1.h.a 6 87.d odd 2 1 CM
2523.1.h.a 6 87.h odd 14 5 inner
2523.1.h.b 6 3.b odd 2 1
2523.1.h.b 6 29.b even 2 1
2523.1.h.b 6 29.e even 14 5
2523.1.h.b 6 87.j odd 14 5
2523.1.j.b 12 29.c odd 4 2
2523.1.j.b 12 29.f odd 28 10
2523.1.j.b 12 87.f even 4 2
2523.1.j.b 12 87.k even 28 10

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T26+T25+T24+T23+T22+T2+1 T_{2}^{6} + T_{2}^{5} + T_{2}^{4} + T_{2}^{3} + T_{2}^{2} + T_{2} + 1 acting on S1new(2523,[χ])S_{1}^{\mathrm{new}}(2523, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6+T5+T4++1 T^{6} + T^{5} + T^{4} + \cdots + 1 Copy content Toggle raw display
33 T6T5+T4++1 T^{6} - T^{5} + T^{4} + \cdots + 1 Copy content Toggle raw display
55 T6 T^{6} Copy content Toggle raw display
77 T6T5+T4++1 T^{6} - T^{5} + T^{4} + \cdots + 1 Copy content Toggle raw display
1111 T6+T5+T4++1 T^{6} + T^{5} + T^{4} + \cdots + 1 Copy content Toggle raw display
1313 T6T5+T4++1 T^{6} - T^{5} + T^{4} + \cdots + 1 Copy content Toggle raw display
1717 (T1)6 (T - 1)^{6} Copy content Toggle raw display
1919 T6 T^{6} Copy content Toggle raw display
2323 T6 T^{6} Copy content Toggle raw display
2929 T6 T^{6} Copy content Toggle raw display
3131 T6 T^{6} Copy content Toggle raw display
3737 T6 T^{6} Copy content Toggle raw display
4141 (T+2)6 (T + 2)^{6} Copy content Toggle raw display
4343 T6 T^{6} Copy content Toggle raw display
4747 T6+T5+T4++1 T^{6} + T^{5} + T^{4} + \cdots + 1 Copy content Toggle raw display
5353 T6 T^{6} Copy content Toggle raw display
5959 T6 T^{6} Copy content Toggle raw display
6161 T6 T^{6} Copy content Toggle raw display
6767 T6T5+T4++1 T^{6} - T^{5} + T^{4} + \cdots + 1 Copy content Toggle raw display
7171 T6 T^{6} Copy content Toggle raw display
7373 T6 T^{6} Copy content Toggle raw display
7979 T6 T^{6} Copy content Toggle raw display
8383 T6 T^{6} Copy content Toggle raw display
8989 T6+T5+T4++1 T^{6} + T^{5} + T^{4} + \cdots + 1 Copy content Toggle raw display
9797 T6 T^{6} Copy content Toggle raw display
show more
show less