Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2175,1,Mod(1826,2175)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2175.1826");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 2175.h (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 87) |
Projective image: | |
Projective field: | Galois closure of 3.1.87.1 |
Artin image: | |
Artin field: | Galois closure of 6.2.946125.1 |
Stark unit: | Root of |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
87.d | odd | 2 | 1 | CM by |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 2175.1.h.b | 1 | |
3.b | odd | 2 | 1 | 2175.1.h.a | 1 | ||
5.b | even | 2 | 1 | 87.1.d.a | ✓ | 1 | |
5.c | odd | 4 | 2 | 2175.1.b.a | 2 | ||
15.d | odd | 2 | 1 | 87.1.d.b | yes | 1 | |
15.e | even | 4 | 2 | 2175.1.b.b | 2 | ||
20.d | odd | 2 | 1 | 1392.1.i.a | 1 | ||
29.b | even | 2 | 1 | 2175.1.h.a | 1 | ||
45.h | odd | 6 | 2 | 2349.1.h.a | 2 | ||
45.j | even | 6 | 2 | 2349.1.h.b | 2 | ||
60.h | even | 2 | 1 | 1392.1.i.b | 1 | ||
87.d | odd | 2 | 1 | CM | 2175.1.h.b | 1 | |
145.d | even | 2 | 1 | 87.1.d.b | yes | 1 | |
145.f | odd | 4 | 2 | 2523.1.b.b | 2 | ||
145.h | odd | 4 | 2 | 2175.1.b.b | 2 | ||
145.l | even | 14 | 6 | 2523.1.h.a | 6 | ||
145.n | even | 14 | 6 | 2523.1.h.b | 6 | ||
145.s | odd | 28 | 12 | 2523.1.j.b | 12 | ||
435.b | odd | 2 | 1 | 87.1.d.a | ✓ | 1 | |
435.l | even | 4 | 2 | 2523.1.b.b | 2 | ||
435.p | even | 4 | 2 | 2175.1.b.a | 2 | ||
435.w | odd | 14 | 6 | 2523.1.h.a | 6 | ||
435.bb | odd | 14 | 6 | 2523.1.h.b | 6 | ||
435.bk | even | 28 | 12 | 2523.1.j.b | 12 | ||
580.e | odd | 2 | 1 | 1392.1.i.b | 1 | ||
1305.w | even | 6 | 2 | 2349.1.h.a | 2 | ||
1305.ba | odd | 6 | 2 | 2349.1.h.b | 2 | ||
1740.k | even | 2 | 1 | 1392.1.i.a | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
87.1.d.a | ✓ | 1 | 5.b | even | 2 | 1 | |
87.1.d.a | ✓ | 1 | 435.b | odd | 2 | 1 | |
87.1.d.b | yes | 1 | 15.d | odd | 2 | 1 | |
87.1.d.b | yes | 1 | 145.d | even | 2 | 1 | |
1392.1.i.a | 1 | 20.d | odd | 2 | 1 | ||
1392.1.i.a | 1 | 1740.k | even | 2 | 1 | ||
1392.1.i.b | 1 | 60.h | even | 2 | 1 | ||
1392.1.i.b | 1 | 580.e | odd | 2 | 1 | ||
2175.1.b.a | 2 | 5.c | odd | 4 | 2 | ||
2175.1.b.a | 2 | 435.p | even | 4 | 2 | ||
2175.1.b.b | 2 | 15.e | even | 4 | 2 | ||
2175.1.b.b | 2 | 145.h | odd | 4 | 2 | ||
2175.1.h.a | 1 | 3.b | odd | 2 | 1 | ||
2175.1.h.a | 1 | 29.b | even | 2 | 1 | ||
2175.1.h.b | 1 | 1.a | even | 1 | 1 | trivial | |
2175.1.h.b | 1 | 87.d | odd | 2 | 1 | CM | |
2349.1.h.a | 2 | 45.h | odd | 6 | 2 | ||
2349.1.h.a | 2 | 1305.w | even | 6 | 2 | ||
2349.1.h.b | 2 | 45.j | even | 6 | 2 | ||
2349.1.h.b | 2 | 1305.ba | odd | 6 | 2 | ||
2523.1.b.b | 2 | 145.f | odd | 4 | 2 | ||
2523.1.b.b | 2 | 435.l | even | 4 | 2 | ||
2523.1.h.a | 6 | 145.l | even | 14 | 6 | ||
2523.1.h.a | 6 | 435.w | odd | 14 | 6 | ||
2523.1.h.b | 6 | 145.n | even | 14 | 6 | ||
2523.1.h.b | 6 | 435.bb | odd | 14 | 6 | ||
2523.1.j.b | 12 | 145.s | odd | 28 | 12 | ||
2523.1.j.b | 12 | 435.bk | even | 28 | 12 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|