Properties

Label 2175.1.h.b
Level 21752175
Weight 11
Character orbit 2175.h
Self dual yes
Analytic conductor 1.0851.085
Analytic rank 00
Dimension 11
Projective image D3D_{3}
CM discriminant -87
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,1,Mod(1826,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1826");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2175=35229 2175 = 3 \cdot 5^{2} \cdot 29
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2175.h (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.085466402481.08546640248
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 87)
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.87.1
Artin image: D6D_6
Artin field: Galois closure of 6.2.946125.1
Stark unit: Root of x610726x527505x4115123540x327505x210726x+1x^{6} - 10726x^{5} - 27505x^{4} - 115123540x^{3} - 27505x^{2} - 10726x + 1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+q2q3q6+q7q8+q9q11+q13+q14q16+q17+q18q21q22+q24+q26q27+q29+q33+q34q39+q99+O(q100) q + q^{2} - q^{3} - q^{6} + q^{7} - q^{8} + q^{9} - q^{11} + q^{13} + q^{14} - q^{16} + q^{17} + q^{18} - q^{21} - q^{22} + q^{24} + q^{26} - q^{27} + q^{29} + q^{33} + q^{34} - q^{39}+ \cdots - q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2175Z)×\left(\mathbb{Z}/2175\mathbb{Z}\right)^\times.

nn 901901 14511451 20022002
χ(n)\chi(n) 1-1 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1826.1
0
1.00000 −1.00000 0 0 −1.00000 1.00000 −1.00000 1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
87.d odd 2 1 CM by Q(87)\Q(\sqrt{-87})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2175.1.h.b 1
3.b odd 2 1 2175.1.h.a 1
5.b even 2 1 87.1.d.a 1
5.c odd 4 2 2175.1.b.a 2
15.d odd 2 1 87.1.d.b yes 1
15.e even 4 2 2175.1.b.b 2
20.d odd 2 1 1392.1.i.a 1
29.b even 2 1 2175.1.h.a 1
45.h odd 6 2 2349.1.h.a 2
45.j even 6 2 2349.1.h.b 2
60.h even 2 1 1392.1.i.b 1
87.d odd 2 1 CM 2175.1.h.b 1
145.d even 2 1 87.1.d.b yes 1
145.f odd 4 2 2523.1.b.b 2
145.h odd 4 2 2175.1.b.b 2
145.l even 14 6 2523.1.h.a 6
145.n even 14 6 2523.1.h.b 6
145.s odd 28 12 2523.1.j.b 12
435.b odd 2 1 87.1.d.a 1
435.l even 4 2 2523.1.b.b 2
435.p even 4 2 2175.1.b.a 2
435.w odd 14 6 2523.1.h.a 6
435.bb odd 14 6 2523.1.h.b 6
435.bk even 28 12 2523.1.j.b 12
580.e odd 2 1 1392.1.i.b 1
1305.w even 6 2 2349.1.h.a 2
1305.ba odd 6 2 2349.1.h.b 2
1740.k even 2 1 1392.1.i.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
87.1.d.a 1 5.b even 2 1
87.1.d.a 1 435.b odd 2 1
87.1.d.b yes 1 15.d odd 2 1
87.1.d.b yes 1 145.d even 2 1
1392.1.i.a 1 20.d odd 2 1
1392.1.i.a 1 1740.k even 2 1
1392.1.i.b 1 60.h even 2 1
1392.1.i.b 1 580.e odd 2 1
2175.1.b.a 2 5.c odd 4 2
2175.1.b.a 2 435.p even 4 2
2175.1.b.b 2 15.e even 4 2
2175.1.b.b 2 145.h odd 4 2
2175.1.h.a 1 3.b odd 2 1
2175.1.h.a 1 29.b even 2 1
2175.1.h.b 1 1.a even 1 1 trivial
2175.1.h.b 1 87.d odd 2 1 CM
2349.1.h.a 2 45.h odd 6 2
2349.1.h.a 2 1305.w even 6 2
2349.1.h.b 2 45.j even 6 2
2349.1.h.b 2 1305.ba odd 6 2
2523.1.b.b 2 145.f odd 4 2
2523.1.b.b 2 435.l even 4 2
2523.1.h.a 6 145.l even 14 6
2523.1.h.a 6 435.w odd 14 6
2523.1.h.b 6 145.n even 14 6
2523.1.h.b 6 435.bb odd 14 6
2523.1.j.b 12 145.s odd 28 12
2523.1.j.b 12 435.bk even 28 12

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(2175,[χ])S_{1}^{\mathrm{new}}(2175, [\chi]):

T21 T_{2} - 1 Copy content Toggle raw display
T71 T_{7} - 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T1 T - 1 Copy content Toggle raw display
33 T+1 T + 1 Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T1 T - 1 Copy content Toggle raw display
1111 T+1 T + 1 Copy content Toggle raw display
1313 T1 T - 1 Copy content Toggle raw display
1717 T1 T - 1 Copy content Toggle raw display
1919 T T Copy content Toggle raw display
2323 T T Copy content Toggle raw display
2929 T1 T - 1 Copy content Toggle raw display
3131 T T Copy content Toggle raw display
3737 T T Copy content Toggle raw display
4141 T2 T - 2 Copy content Toggle raw display
4343 T T Copy content Toggle raw display
4747 T1 T - 1 Copy content Toggle raw display
5353 T T Copy content Toggle raw display
5959 T T Copy content Toggle raw display
6161 T T Copy content Toggle raw display
6767 T1 T - 1 Copy content Toggle raw display
7171 T T Copy content Toggle raw display
7373 T T Copy content Toggle raw display
7979 T T Copy content Toggle raw display
8383 T T Copy content Toggle raw display
8989 T+1 T + 1 Copy content Toggle raw display
9797 T T Copy content Toggle raw display
show more
show less