Properties

Label 2-2523-1.1-c1-0-3
Degree $2$
Conductor $2523$
Sign $1$
Analytic cond. $20.1462$
Root an. cond. $4.48845$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.26·2-s − 3-s + 3.11·4-s + 0.694·5-s + 2.26·6-s − 1.74·7-s − 2.51·8-s + 9-s − 1.57·10-s − 4.36·11-s − 3.11·12-s − 3.28·13-s + 3.95·14-s − 0.694·15-s − 0.539·16-s − 5.78·17-s − 2.26·18-s − 7.37·19-s + 2.16·20-s + 1.74·21-s + 9.87·22-s + 1.73·23-s + 2.51·24-s − 4.51·25-s + 7.43·26-s − 27-s − 5.43·28-s + ⋯
L(s)  = 1  − 1.59·2-s − 0.577·3-s + 1.55·4-s + 0.310·5-s + 0.923·6-s − 0.660·7-s − 0.888·8-s + 0.333·9-s − 0.496·10-s − 1.31·11-s − 0.898·12-s − 0.912·13-s + 1.05·14-s − 0.179·15-s − 0.134·16-s − 1.40·17-s − 0.532·18-s − 1.69·19-s + 0.483·20-s + 0.381·21-s + 2.10·22-s + 0.361·23-s + 0.513·24-s − 0.903·25-s + 1.45·26-s − 0.192·27-s − 1.02·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2523\)    =    \(3 \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(20.1462\)
Root analytic conductor: \(4.48845\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2523,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1393936225\)
\(L(\frac12)\) \(\approx\) \(0.1393936225\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
29 \( 1 \)
good2 \( 1 + 2.26T + 2T^{2} \)
5 \( 1 - 0.694T + 5T^{2} \)
7 \( 1 + 1.74T + 7T^{2} \)
11 \( 1 + 4.36T + 11T^{2} \)
13 \( 1 + 3.28T + 13T^{2} \)
17 \( 1 + 5.78T + 17T^{2} \)
19 \( 1 + 7.37T + 19T^{2} \)
23 \( 1 - 1.73T + 23T^{2} \)
31 \( 1 + 5.92T + 31T^{2} \)
37 \( 1 + 2.89T + 37T^{2} \)
41 \( 1 - 7.12T + 41T^{2} \)
43 \( 1 - 10.5T + 43T^{2} \)
47 \( 1 + 9.52T + 47T^{2} \)
53 \( 1 - 12.3T + 53T^{2} \)
59 \( 1 + 6.64T + 59T^{2} \)
61 \( 1 - 1.89T + 61T^{2} \)
67 \( 1 + 4.62T + 67T^{2} \)
71 \( 1 - 4.65T + 71T^{2} \)
73 \( 1 - 0.735T + 73T^{2} \)
79 \( 1 - 6.69T + 79T^{2} \)
83 \( 1 - 14.6T + 83T^{2} \)
89 \( 1 - 1.66T + 89T^{2} \)
97 \( 1 - 5.67T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.133601124478686159484656208220, −8.187813752208292704297183858249, −7.51095504332248203052347023500, −6.77527772136984894286583937119, −6.14767334532275086717226719086, −5.13464491826478077062494674994, −4.17693834732586700787194652462, −2.54383706118574103476761035182, −2.01767181238809234884165062594, −0.28655037356573287564753533370, 0.28655037356573287564753533370, 2.01767181238809234884165062594, 2.54383706118574103476761035182, 4.17693834732586700787194652462, 5.13464491826478077062494674994, 6.14767334532275086717226719086, 6.77527772136984894286583937119, 7.51095504332248203052347023500, 8.187813752208292704297183858249, 9.133601124478686159484656208220

Graph of the $Z$-function along the critical line