Properties

Label 2523.2.a.k.1.1
Level $2523$
Weight $2$
Character 2523.1
Self dual yes
Analytic conductor $20.146$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2523,2,Mod(1,2523)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2523, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2523.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2523 = 3 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2523.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.1462564300\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.8902000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 9x^{4} + 10x^{3} + 13x^{2} - 9x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.26098\) of defining polynomial
Character \(\chi\) \(=\) 2523.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.26098 q^{2} -1.00000 q^{3} +3.11205 q^{4} +0.694681 q^{5} +2.26098 q^{6} -1.74736 q^{7} -2.51433 q^{8} +1.00000 q^{9} -1.57066 q^{10} -4.36539 q^{11} -3.11205 q^{12} -3.28875 q^{13} +3.95075 q^{14} -0.694681 q^{15} -0.539244 q^{16} -5.78276 q^{17} -2.26098 q^{18} -7.37607 q^{19} +2.16188 q^{20} +1.74736 q^{21} +9.87009 q^{22} +1.73466 q^{23} +2.51433 q^{24} -4.51742 q^{25} +7.43580 q^{26} -1.00000 q^{27} -5.43787 q^{28} +1.57066 q^{30} -5.92335 q^{31} +6.24788 q^{32} +4.36539 q^{33} +13.0747 q^{34} -1.21386 q^{35} +3.11205 q^{36} -2.89863 q^{37} +16.6772 q^{38} +3.28875 q^{39} -1.74666 q^{40} +7.12933 q^{41} -3.95075 q^{42} +10.5602 q^{43} -13.5853 q^{44} +0.694681 q^{45} -3.92203 q^{46} -9.52021 q^{47} +0.539244 q^{48} -3.94673 q^{49} +10.2138 q^{50} +5.78276 q^{51} -10.2347 q^{52} +12.3047 q^{53} +2.26098 q^{54} -3.03256 q^{55} +4.39344 q^{56} +7.37607 q^{57} -6.64954 q^{59} -2.16188 q^{60} +1.89863 q^{61} +13.3926 q^{62} -1.74736 q^{63} -13.0479 q^{64} -2.28463 q^{65} -9.87009 q^{66} -4.62828 q^{67} -17.9962 q^{68} -1.73466 q^{69} +2.74451 q^{70} +4.65874 q^{71} -2.51433 q^{72} +0.735359 q^{73} +6.55375 q^{74} +4.51742 q^{75} -22.9547 q^{76} +7.62791 q^{77} -7.43580 q^{78} +6.69339 q^{79} -0.374603 q^{80} +1.00000 q^{81} -16.1193 q^{82} +14.6306 q^{83} +5.43787 q^{84} -4.01718 q^{85} -23.8764 q^{86} +10.9760 q^{88} +1.66540 q^{89} -1.57066 q^{90} +5.74662 q^{91} +5.39833 q^{92} +5.92335 q^{93} +21.5250 q^{94} -5.12402 q^{95} -6.24788 q^{96} +5.67811 q^{97} +8.92350 q^{98} -4.36539 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{2} - 6 q^{3} + 7 q^{4} + 5 q^{5} + q^{6} + 3 q^{7} + 6 q^{8} + 6 q^{9} - 12 q^{10} - 6 q^{11} - 7 q^{12} + 8 q^{13} + 10 q^{14} - 5 q^{15} + 17 q^{16} - 2 q^{17} - q^{18} + q^{19} + 3 q^{20}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.26098 −1.59876 −0.799379 0.600828i \(-0.794838\pi\)
−0.799379 + 0.600828i \(0.794838\pi\)
\(3\) −1.00000 −0.577350
\(4\) 3.11205 1.55603
\(5\) 0.694681 0.310671 0.155335 0.987862i \(-0.450354\pi\)
0.155335 + 0.987862i \(0.450354\pi\)
\(6\) 2.26098 0.923043
\(7\) −1.74736 −0.660440 −0.330220 0.943904i \(-0.607123\pi\)
−0.330220 + 0.943904i \(0.607123\pi\)
\(8\) −2.51433 −0.888949
\(9\) 1.00000 0.333333
\(10\) −1.57066 −0.496687
\(11\) −4.36539 −1.31622 −0.658108 0.752924i \(-0.728643\pi\)
−0.658108 + 0.752924i \(0.728643\pi\)
\(12\) −3.11205 −0.898371
\(13\) −3.28875 −0.912134 −0.456067 0.889945i \(-0.650742\pi\)
−0.456067 + 0.889945i \(0.650742\pi\)
\(14\) 3.95075 1.05588
\(15\) −0.694681 −0.179366
\(16\) −0.539244 −0.134811
\(17\) −5.78276 −1.40253 −0.701263 0.712903i \(-0.747380\pi\)
−0.701263 + 0.712903i \(0.747380\pi\)
\(18\) −2.26098 −0.532919
\(19\) −7.37607 −1.69219 −0.846093 0.533035i \(-0.821051\pi\)
−0.846093 + 0.533035i \(0.821051\pi\)
\(20\) 2.16188 0.483412
\(21\) 1.74736 0.381305
\(22\) 9.87009 2.10431
\(23\) 1.73466 0.361701 0.180850 0.983511i \(-0.442115\pi\)
0.180850 + 0.983511i \(0.442115\pi\)
\(24\) 2.51433 0.513235
\(25\) −4.51742 −0.903484
\(26\) 7.43580 1.45828
\(27\) −1.00000 −0.192450
\(28\) −5.43787 −1.02766
\(29\) 0 0
\(30\) 1.57066 0.286763
\(31\) −5.92335 −1.06387 −0.531933 0.846787i \(-0.678534\pi\)
−0.531933 + 0.846787i \(0.678534\pi\)
\(32\) 6.24788 1.10448
\(33\) 4.36539 0.759918
\(34\) 13.0747 2.24230
\(35\) −1.21386 −0.205179
\(36\) 3.11205 0.518675
\(37\) −2.89863 −0.476531 −0.238266 0.971200i \(-0.576579\pi\)
−0.238266 + 0.971200i \(0.576579\pi\)
\(38\) 16.6772 2.70540
\(39\) 3.28875 0.526621
\(40\) −1.74666 −0.276171
\(41\) 7.12933 1.11341 0.556707 0.830709i \(-0.312065\pi\)
0.556707 + 0.830709i \(0.312065\pi\)
\(42\) −3.95075 −0.609614
\(43\) 10.5602 1.61041 0.805205 0.592997i \(-0.202055\pi\)
0.805205 + 0.592997i \(0.202055\pi\)
\(44\) −13.5853 −2.04806
\(45\) 0.694681 0.103557
\(46\) −3.92203 −0.578272
\(47\) −9.52021 −1.38867 −0.694333 0.719654i \(-0.744300\pi\)
−0.694333 + 0.719654i \(0.744300\pi\)
\(48\) 0.539244 0.0778332
\(49\) −3.94673 −0.563819
\(50\) 10.2138 1.44445
\(51\) 5.78276 0.809749
\(52\) −10.2347 −1.41930
\(53\) 12.3047 1.69018 0.845092 0.534620i \(-0.179545\pi\)
0.845092 + 0.534620i \(0.179545\pi\)
\(54\) 2.26098 0.307681
\(55\) −3.03256 −0.408910
\(56\) 4.39344 0.587097
\(57\) 7.37607 0.976984
\(58\) 0 0
\(59\) −6.64954 −0.865696 −0.432848 0.901467i \(-0.642491\pi\)
−0.432848 + 0.901467i \(0.642491\pi\)
\(60\) −2.16188 −0.279098
\(61\) 1.89863 0.243094 0.121547 0.992586i \(-0.461214\pi\)
0.121547 + 0.992586i \(0.461214\pi\)
\(62\) 13.3926 1.70086
\(63\) −1.74736 −0.220147
\(64\) −13.0479 −1.63098
\(65\) −2.28463 −0.283374
\(66\) −9.87009 −1.21492
\(67\) −4.62828 −0.565434 −0.282717 0.959203i \(-0.591236\pi\)
−0.282717 + 0.959203i \(0.591236\pi\)
\(68\) −17.9962 −2.18237
\(69\) −1.73466 −0.208828
\(70\) 2.74451 0.328032
\(71\) 4.65874 0.552891 0.276446 0.961030i \(-0.410843\pi\)
0.276446 + 0.961030i \(0.410843\pi\)
\(72\) −2.51433 −0.296316
\(73\) 0.735359 0.0860672 0.0430336 0.999074i \(-0.486298\pi\)
0.0430336 + 0.999074i \(0.486298\pi\)
\(74\) 6.55375 0.761858
\(75\) 4.51742 0.521626
\(76\) −22.9547 −2.63308
\(77\) 7.62791 0.869281
\(78\) −7.43580 −0.841939
\(79\) 6.69339 0.753065 0.376533 0.926403i \(-0.377116\pi\)
0.376533 + 0.926403i \(0.377116\pi\)
\(80\) −0.374603 −0.0418819
\(81\) 1.00000 0.111111
\(82\) −16.1193 −1.78008
\(83\) 14.6306 1.60592 0.802959 0.596035i \(-0.203258\pi\)
0.802959 + 0.596035i \(0.203258\pi\)
\(84\) 5.43787 0.593320
\(85\) −4.01718 −0.435724
\(86\) −23.8764 −2.57465
\(87\) 0 0
\(88\) 10.9760 1.17005
\(89\) 1.66540 0.176533 0.0882663 0.996097i \(-0.471867\pi\)
0.0882663 + 0.996097i \(0.471867\pi\)
\(90\) −1.57066 −0.165562
\(91\) 5.74662 0.602410
\(92\) 5.39833 0.562815
\(93\) 5.92335 0.614223
\(94\) 21.5250 2.22014
\(95\) −5.12402 −0.525713
\(96\) −6.24788 −0.637671
\(97\) 5.67811 0.576525 0.288262 0.957551i \(-0.406922\pi\)
0.288262 + 0.957551i \(0.406922\pi\)
\(98\) 8.92350 0.901410
\(99\) −4.36539 −0.438739
\(100\) −14.0584 −1.40584
\(101\) −2.01614 −0.200613 −0.100307 0.994957i \(-0.531982\pi\)
−0.100307 + 0.994957i \(0.531982\pi\)
\(102\) −13.0747 −1.29459
\(103\) −14.1152 −1.39081 −0.695405 0.718618i \(-0.744775\pi\)
−0.695405 + 0.718618i \(0.744775\pi\)
\(104\) 8.26899 0.810841
\(105\) 1.21386 0.118460
\(106\) −27.8208 −2.70220
\(107\) −4.67185 −0.451645 −0.225822 0.974168i \(-0.572507\pi\)
−0.225822 + 0.974168i \(0.572507\pi\)
\(108\) −3.11205 −0.299457
\(109\) −13.4642 −1.28963 −0.644816 0.764338i \(-0.723066\pi\)
−0.644816 + 0.764338i \(0.723066\pi\)
\(110\) 6.85656 0.653748
\(111\) 2.89863 0.275125
\(112\) 0.942254 0.0890346
\(113\) 3.04283 0.286246 0.143123 0.989705i \(-0.454286\pi\)
0.143123 + 0.989705i \(0.454286\pi\)
\(114\) −16.6772 −1.56196
\(115\) 1.20503 0.112370
\(116\) 0 0
\(117\) −3.28875 −0.304045
\(118\) 15.0345 1.38404
\(119\) 10.1046 0.926284
\(120\) 1.74666 0.159447
\(121\) 8.05666 0.732424
\(122\) −4.29277 −0.388649
\(123\) −7.12933 −0.642830
\(124\) −18.4338 −1.65540
\(125\) −6.61157 −0.591357
\(126\) 3.95075 0.351961
\(127\) −5.57137 −0.494379 −0.247189 0.968967i \(-0.579507\pi\)
−0.247189 + 0.968967i \(0.579507\pi\)
\(128\) 17.0053 1.50307
\(129\) −10.5602 −0.929771
\(130\) 5.16551 0.453046
\(131\) −8.35339 −0.729839 −0.364920 0.931039i \(-0.618904\pi\)
−0.364920 + 0.931039i \(0.618904\pi\)
\(132\) 13.5853 1.18245
\(133\) 12.8886 1.11759
\(134\) 10.4645 0.903992
\(135\) −0.694681 −0.0597886
\(136\) 14.5398 1.24677
\(137\) 18.1690 1.55228 0.776142 0.630558i \(-0.217174\pi\)
0.776142 + 0.630558i \(0.217174\pi\)
\(138\) 3.92203 0.333865
\(139\) −20.4275 −1.73263 −0.866317 0.499494i \(-0.833519\pi\)
−0.866317 + 0.499494i \(0.833519\pi\)
\(140\) −3.77759 −0.319264
\(141\) 9.52021 0.801746
\(142\) −10.5333 −0.883939
\(143\) 14.3567 1.20057
\(144\) −0.539244 −0.0449370
\(145\) 0 0
\(146\) −1.66263 −0.137601
\(147\) 3.94673 0.325521
\(148\) −9.02067 −0.741495
\(149\) −17.4954 −1.43328 −0.716640 0.697443i \(-0.754321\pi\)
−0.716640 + 0.697443i \(0.754321\pi\)
\(150\) −10.2138 −0.833954
\(151\) 19.7133 1.60425 0.802124 0.597158i \(-0.203703\pi\)
0.802124 + 0.597158i \(0.203703\pi\)
\(152\) 18.5459 1.50427
\(153\) −5.78276 −0.467509
\(154\) −17.2466 −1.38977
\(155\) −4.11484 −0.330512
\(156\) 10.2347 0.819435
\(157\) 20.1702 1.60976 0.804878 0.593441i \(-0.202231\pi\)
0.804878 + 0.593441i \(0.202231\pi\)
\(158\) −15.1337 −1.20397
\(159\) −12.3047 −0.975829
\(160\) 4.34028 0.343130
\(161\) −3.03107 −0.238882
\(162\) −2.26098 −0.177640
\(163\) −8.65350 −0.677794 −0.338897 0.940823i \(-0.610054\pi\)
−0.338897 + 0.940823i \(0.610054\pi\)
\(164\) 22.1868 1.73250
\(165\) 3.03256 0.236084
\(166\) −33.0796 −2.56747
\(167\) −2.57560 −0.199306 −0.0996529 0.995022i \(-0.531773\pi\)
−0.0996529 + 0.995022i \(0.531773\pi\)
\(168\) −4.39344 −0.338961
\(169\) −2.18415 −0.168011
\(170\) 9.08277 0.696617
\(171\) −7.37607 −0.564062
\(172\) 32.8638 2.50584
\(173\) 13.0654 0.993343 0.496671 0.867939i \(-0.334555\pi\)
0.496671 + 0.867939i \(0.334555\pi\)
\(174\) 0 0
\(175\) 7.89355 0.596697
\(176\) 2.35401 0.177440
\(177\) 6.64954 0.499810
\(178\) −3.76545 −0.282233
\(179\) 0.551360 0.0412106 0.0206053 0.999788i \(-0.493441\pi\)
0.0206053 + 0.999788i \(0.493441\pi\)
\(180\) 2.16188 0.161137
\(181\) 0.881620 0.0655303 0.0327651 0.999463i \(-0.489569\pi\)
0.0327651 + 0.999463i \(0.489569\pi\)
\(182\) −12.9930 −0.963107
\(183\) −1.89863 −0.140351
\(184\) −4.36149 −0.321533
\(185\) −2.01362 −0.148044
\(186\) −13.3926 −0.981994
\(187\) 25.2440 1.84603
\(188\) −29.6274 −2.16080
\(189\) 1.74736 0.127102
\(190\) 11.5853 0.840488
\(191\) −1.63034 −0.117967 −0.0589835 0.998259i \(-0.518786\pi\)
−0.0589835 + 0.998259i \(0.518786\pi\)
\(192\) 13.0479 0.941649
\(193\) −7.08096 −0.509699 −0.254849 0.966981i \(-0.582026\pi\)
−0.254849 + 0.966981i \(0.582026\pi\)
\(194\) −12.8381 −0.921723
\(195\) 2.28463 0.163606
\(196\) −12.2824 −0.877317
\(197\) 13.7732 0.981298 0.490649 0.871357i \(-0.336760\pi\)
0.490649 + 0.871357i \(0.336760\pi\)
\(198\) 9.87009 0.701437
\(199\) −5.84299 −0.414199 −0.207099 0.978320i \(-0.566402\pi\)
−0.207099 + 0.978320i \(0.566402\pi\)
\(200\) 11.3583 0.803151
\(201\) 4.62828 0.326453
\(202\) 4.55846 0.320732
\(203\) 0 0
\(204\) 17.9962 1.25999
\(205\) 4.95261 0.345905
\(206\) 31.9142 2.22357
\(207\) 1.73466 0.120567
\(208\) 1.77344 0.122966
\(209\) 32.1995 2.22728
\(210\) −2.74451 −0.189389
\(211\) 23.4620 1.61519 0.807594 0.589738i \(-0.200769\pi\)
0.807594 + 0.589738i \(0.200769\pi\)
\(212\) 38.2929 2.62997
\(213\) −4.65874 −0.319212
\(214\) 10.5630 0.722070
\(215\) 7.33595 0.500307
\(216\) 2.51433 0.171078
\(217\) 10.3502 0.702619
\(218\) 30.4422 2.06181
\(219\) −0.735359 −0.0496909
\(220\) −9.43747 −0.636274
\(221\) 19.0180 1.27929
\(222\) −6.55375 −0.439859
\(223\) −3.33324 −0.223210 −0.111605 0.993753i \(-0.535599\pi\)
−0.111605 + 0.993753i \(0.535599\pi\)
\(224\) −10.9173 −0.729442
\(225\) −4.51742 −0.301161
\(226\) −6.87980 −0.457637
\(227\) −8.50125 −0.564248 −0.282124 0.959378i \(-0.591039\pi\)
−0.282124 + 0.959378i \(0.591039\pi\)
\(228\) 22.9547 1.52021
\(229\) −24.9056 −1.64581 −0.822904 0.568180i \(-0.807648\pi\)
−0.822904 + 0.568180i \(0.807648\pi\)
\(230\) −2.72456 −0.179652
\(231\) −7.62791 −0.501880
\(232\) 0 0
\(233\) −6.81039 −0.446164 −0.223082 0.974800i \(-0.571612\pi\)
−0.223082 + 0.974800i \(0.571612\pi\)
\(234\) 7.43580 0.486094
\(235\) −6.61351 −0.431418
\(236\) −20.6937 −1.34704
\(237\) −6.69339 −0.434782
\(238\) −22.8463 −1.48090
\(239\) 4.88184 0.315780 0.157890 0.987457i \(-0.449531\pi\)
0.157890 + 0.987457i \(0.449531\pi\)
\(240\) 0.374603 0.0241805
\(241\) −3.85069 −0.248045 −0.124022 0.992279i \(-0.539579\pi\)
−0.124022 + 0.992279i \(0.539579\pi\)
\(242\) −18.2160 −1.17097
\(243\) −1.00000 −0.0641500
\(244\) 5.90862 0.378261
\(245\) −2.74172 −0.175162
\(246\) 16.1193 1.02773
\(247\) 24.2580 1.54350
\(248\) 14.8933 0.945722
\(249\) −14.6306 −0.927177
\(250\) 14.9487 0.945436
\(251\) 5.91306 0.373229 0.186614 0.982433i \(-0.440248\pi\)
0.186614 + 0.982433i \(0.440248\pi\)
\(252\) −5.43787 −0.342554
\(253\) −7.57245 −0.476076
\(254\) 12.5968 0.790392
\(255\) 4.01718 0.251565
\(256\) −12.3529 −0.772057
\(257\) −7.92041 −0.494061 −0.247031 0.969008i \(-0.579455\pi\)
−0.247031 + 0.969008i \(0.579455\pi\)
\(258\) 23.8764 1.48648
\(259\) 5.06494 0.314720
\(260\) −7.10988 −0.440936
\(261\) 0 0
\(262\) 18.8869 1.16684
\(263\) 4.63022 0.285512 0.142756 0.989758i \(-0.454404\pi\)
0.142756 + 0.989758i \(0.454404\pi\)
\(264\) −10.9760 −0.675528
\(265\) 8.54787 0.525091
\(266\) −29.1410 −1.78675
\(267\) −1.66540 −0.101921
\(268\) −14.4034 −0.879829
\(269\) 27.3742 1.66903 0.834516 0.550984i \(-0.185747\pi\)
0.834516 + 0.550984i \(0.185747\pi\)
\(270\) 1.57066 0.0955875
\(271\) −3.93007 −0.238735 −0.119367 0.992850i \(-0.538087\pi\)
−0.119367 + 0.992850i \(0.538087\pi\)
\(272\) 3.11832 0.189076
\(273\) −5.74662 −0.347801
\(274\) −41.0799 −2.48173
\(275\) 19.7203 1.18918
\(276\) −5.39833 −0.324942
\(277\) 26.6161 1.59921 0.799605 0.600527i \(-0.205042\pi\)
0.799605 + 0.600527i \(0.205042\pi\)
\(278\) 46.1862 2.77006
\(279\) −5.92335 −0.354622
\(280\) 3.05204 0.182394
\(281\) 12.5229 0.747054 0.373527 0.927619i \(-0.378148\pi\)
0.373527 + 0.927619i \(0.378148\pi\)
\(282\) −21.5250 −1.28180
\(283\) −17.5097 −1.04084 −0.520422 0.853909i \(-0.674225\pi\)
−0.520422 + 0.853909i \(0.674225\pi\)
\(284\) 14.4982 0.860313
\(285\) 5.12402 0.303521
\(286\) −32.4602 −1.91941
\(287\) −12.4575 −0.735343
\(288\) 6.24788 0.368160
\(289\) 16.4403 0.967079
\(290\) 0 0
\(291\) −5.67811 −0.332857
\(292\) 2.28847 0.133923
\(293\) 5.94551 0.347341 0.173670 0.984804i \(-0.444437\pi\)
0.173670 + 0.984804i \(0.444437\pi\)
\(294\) −8.92350 −0.520429
\(295\) −4.61931 −0.268946
\(296\) 7.28810 0.423612
\(297\) 4.36539 0.253306
\(298\) 39.5569 2.29147
\(299\) −5.70484 −0.329920
\(300\) 14.0584 0.811664
\(301\) −18.4524 −1.06358
\(302\) −44.5715 −2.56480
\(303\) 2.01614 0.115824
\(304\) 3.97750 0.228125
\(305\) 1.31894 0.0755223
\(306\) 13.0747 0.747433
\(307\) −12.2335 −0.698203 −0.349102 0.937085i \(-0.613513\pi\)
−0.349102 + 0.937085i \(0.613513\pi\)
\(308\) 23.7384 1.35262
\(309\) 14.1152 0.802984
\(310\) 9.30359 0.528409
\(311\) 10.4087 0.590226 0.295113 0.955462i \(-0.404643\pi\)
0.295113 + 0.955462i \(0.404643\pi\)
\(312\) −8.26899 −0.468139
\(313\) 7.57216 0.428004 0.214002 0.976833i \(-0.431350\pi\)
0.214002 + 0.976833i \(0.431350\pi\)
\(314\) −45.6045 −2.57361
\(315\) −1.21386 −0.0683932
\(316\) 20.8302 1.17179
\(317\) −7.30476 −0.410276 −0.205138 0.978733i \(-0.565764\pi\)
−0.205138 + 0.978733i \(0.565764\pi\)
\(318\) 27.8208 1.56011
\(319\) 0 0
\(320\) −9.06411 −0.506699
\(321\) 4.67185 0.260757
\(322\) 6.85319 0.381914
\(323\) 42.6541 2.37334
\(324\) 3.11205 0.172892
\(325\) 14.8566 0.824098
\(326\) 19.5654 1.08363
\(327\) 13.4642 0.744569
\(328\) −17.9255 −0.989768
\(329\) 16.6352 0.917130
\(330\) −6.85656 −0.377441
\(331\) 20.2190 1.11134 0.555669 0.831404i \(-0.312462\pi\)
0.555669 + 0.831404i \(0.312462\pi\)
\(332\) 45.5312 2.49885
\(333\) −2.89863 −0.158844
\(334\) 5.82339 0.318642
\(335\) −3.21518 −0.175664
\(336\) −0.942254 −0.0514042
\(337\) 22.5657 1.22923 0.614617 0.788826i \(-0.289311\pi\)
0.614617 + 0.788826i \(0.289311\pi\)
\(338\) 4.93832 0.268609
\(339\) −3.04283 −0.165264
\(340\) −12.5017 −0.677997
\(341\) 25.8578 1.40028
\(342\) 16.6772 0.901799
\(343\) 19.1279 1.03281
\(344\) −26.5517 −1.43157
\(345\) −1.20503 −0.0648768
\(346\) −29.5406 −1.58811
\(347\) 25.0587 1.34522 0.672611 0.739996i \(-0.265173\pi\)
0.672611 + 0.739996i \(0.265173\pi\)
\(348\) 0 0
\(349\) 13.7348 0.735209 0.367605 0.929982i \(-0.380178\pi\)
0.367605 + 0.929982i \(0.380178\pi\)
\(350\) −17.8472 −0.953973
\(351\) 3.28875 0.175540
\(352\) −27.2745 −1.45373
\(353\) −20.0703 −1.06824 −0.534118 0.845410i \(-0.679356\pi\)
−0.534118 + 0.845410i \(0.679356\pi\)
\(354\) −15.0345 −0.799074
\(355\) 3.23634 0.171767
\(356\) 5.18282 0.274689
\(357\) −10.1046 −0.534790
\(358\) −1.24662 −0.0658858
\(359\) −33.7750 −1.78258 −0.891289 0.453436i \(-0.850198\pi\)
−0.891289 + 0.453436i \(0.850198\pi\)
\(360\) −1.74666 −0.0920569
\(361\) 35.4064 1.86350
\(362\) −1.99333 −0.104767
\(363\) −8.05666 −0.422865
\(364\) 17.8838 0.937365
\(365\) 0.510840 0.0267386
\(366\) 4.29277 0.224386
\(367\) −30.8220 −1.60889 −0.804447 0.594025i \(-0.797538\pi\)
−0.804447 + 0.594025i \(0.797538\pi\)
\(368\) −0.935403 −0.0487612
\(369\) 7.12933 0.371138
\(370\) 4.55277 0.236687
\(371\) −21.5008 −1.11627
\(372\) 18.4338 0.955746
\(373\) 27.7259 1.43559 0.717797 0.696253i \(-0.245151\pi\)
0.717797 + 0.696253i \(0.245151\pi\)
\(374\) −57.0764 −2.95135
\(375\) 6.61157 0.341420
\(376\) 23.9369 1.23445
\(377\) 0 0
\(378\) −3.95075 −0.203205
\(379\) −10.4155 −0.535010 −0.267505 0.963557i \(-0.586199\pi\)
−0.267505 + 0.963557i \(0.586199\pi\)
\(380\) −15.9462 −0.818023
\(381\) 5.57137 0.285430
\(382\) 3.68617 0.188601
\(383\) 3.73020 0.190604 0.0953022 0.995448i \(-0.469618\pi\)
0.0953022 + 0.995448i \(0.469618\pi\)
\(384\) −17.0053 −0.867796
\(385\) 5.29897 0.270060
\(386\) 16.0099 0.814885
\(387\) 10.5602 0.536803
\(388\) 17.6706 0.897087
\(389\) −25.4297 −1.28934 −0.644668 0.764463i \(-0.723004\pi\)
−0.644668 + 0.764463i \(0.723004\pi\)
\(390\) −5.16551 −0.261566
\(391\) −10.0311 −0.507295
\(392\) 9.92338 0.501207
\(393\) 8.35339 0.421373
\(394\) −31.1409 −1.56886
\(395\) 4.64977 0.233955
\(396\) −13.5853 −0.682688
\(397\) −30.9208 −1.55187 −0.775935 0.630813i \(-0.782722\pi\)
−0.775935 + 0.630813i \(0.782722\pi\)
\(398\) 13.2109 0.662203
\(399\) −12.8886 −0.645239
\(400\) 2.43599 0.121800
\(401\) 2.48245 0.123968 0.0619838 0.998077i \(-0.480257\pi\)
0.0619838 + 0.998077i \(0.480257\pi\)
\(402\) −10.4645 −0.521920
\(403\) 19.4804 0.970388
\(404\) −6.27432 −0.312159
\(405\) 0.694681 0.0345190
\(406\) 0 0
\(407\) 12.6536 0.627218
\(408\) −14.5398 −0.719825
\(409\) −0.575334 −0.0284484 −0.0142242 0.999899i \(-0.504528\pi\)
−0.0142242 + 0.999899i \(0.504528\pi\)
\(410\) −11.1978 −0.553018
\(411\) −18.1690 −0.896212
\(412\) −43.9271 −2.16413
\(413\) 11.6191 0.571740
\(414\) −3.92203 −0.192757
\(415\) 10.1636 0.498912
\(416\) −20.5477 −1.00743
\(417\) 20.4275 1.00034
\(418\) −72.8025 −3.56088
\(419\) −30.7334 −1.50142 −0.750712 0.660630i \(-0.770289\pi\)
−0.750712 + 0.660630i \(0.770289\pi\)
\(420\) 3.77759 0.184327
\(421\) −23.1624 −1.12887 −0.564433 0.825479i \(-0.690905\pi\)
−0.564433 + 0.825479i \(0.690905\pi\)
\(422\) −53.0472 −2.58229
\(423\) −9.52021 −0.462888
\(424\) −30.9381 −1.50249
\(425\) 26.1232 1.26716
\(426\) 10.5333 0.510342
\(427\) −3.31758 −0.160549
\(428\) −14.5390 −0.702771
\(429\) −14.3567 −0.693147
\(430\) −16.5865 −0.799870
\(431\) −34.4994 −1.66178 −0.830889 0.556438i \(-0.812168\pi\)
−0.830889 + 0.556438i \(0.812168\pi\)
\(432\) 0.539244 0.0259444
\(433\) 16.5174 0.793776 0.396888 0.917867i \(-0.370090\pi\)
0.396888 + 0.917867i \(0.370090\pi\)
\(434\) −23.4017 −1.12332
\(435\) 0 0
\(436\) −41.9011 −2.00670
\(437\) −12.7949 −0.612065
\(438\) 1.66263 0.0794437
\(439\) −25.3234 −1.20862 −0.604309 0.796750i \(-0.706551\pi\)
−0.604309 + 0.796750i \(0.706551\pi\)
\(440\) 7.62484 0.363500
\(441\) −3.94673 −0.187940
\(442\) −42.9995 −2.04528
\(443\) 8.31671 0.395139 0.197569 0.980289i \(-0.436695\pi\)
0.197569 + 0.980289i \(0.436695\pi\)
\(444\) 9.02067 0.428102
\(445\) 1.15693 0.0548435
\(446\) 7.53640 0.356859
\(447\) 17.4954 0.827505
\(448\) 22.7993 1.07717
\(449\) −21.5337 −1.01624 −0.508118 0.861287i \(-0.669659\pi\)
−0.508118 + 0.861287i \(0.669659\pi\)
\(450\) 10.2138 0.481484
\(451\) −31.1223 −1.46549
\(452\) 9.46945 0.445405
\(453\) −19.7133 −0.926213
\(454\) 19.2212 0.902095
\(455\) 3.99207 0.187151
\(456\) −18.5459 −0.868489
\(457\) 31.1654 1.45785 0.728927 0.684591i \(-0.240019\pi\)
0.728927 + 0.684591i \(0.240019\pi\)
\(458\) 56.3112 2.63125
\(459\) 5.78276 0.269916
\(460\) 3.75012 0.174850
\(461\) 3.11409 0.145038 0.0725188 0.997367i \(-0.476896\pi\)
0.0725188 + 0.997367i \(0.476896\pi\)
\(462\) 17.2466 0.802384
\(463\) −18.1671 −0.844296 −0.422148 0.906527i \(-0.638724\pi\)
−0.422148 + 0.906527i \(0.638724\pi\)
\(464\) 0 0
\(465\) 4.11484 0.190821
\(466\) 15.3982 0.713307
\(467\) −10.9579 −0.507073 −0.253536 0.967326i \(-0.581594\pi\)
−0.253536 + 0.967326i \(0.581594\pi\)
\(468\) −10.2347 −0.473101
\(469\) 8.08726 0.373435
\(470\) 14.9530 0.689733
\(471\) −20.1702 −0.929393
\(472\) 16.7191 0.769560
\(473\) −46.0993 −2.11965
\(474\) 15.1337 0.695112
\(475\) 33.3208 1.52886
\(476\) 31.4459 1.44132
\(477\) 12.3047 0.563395
\(478\) −11.0378 −0.504856
\(479\) −15.7087 −0.717748 −0.358874 0.933386i \(-0.616839\pi\)
−0.358874 + 0.933386i \(0.616839\pi\)
\(480\) −4.34028 −0.198106
\(481\) 9.53285 0.434660
\(482\) 8.70635 0.396563
\(483\) 3.03107 0.137918
\(484\) 25.0727 1.13967
\(485\) 3.94448 0.179109
\(486\) 2.26098 0.102560
\(487\) −0.758980 −0.0343927 −0.0171963 0.999852i \(-0.505474\pi\)
−0.0171963 + 0.999852i \(0.505474\pi\)
\(488\) −4.77377 −0.216098
\(489\) 8.65350 0.391325
\(490\) 6.19899 0.280042
\(491\) −20.3493 −0.918349 −0.459175 0.888346i \(-0.651855\pi\)
−0.459175 + 0.888346i \(0.651855\pi\)
\(492\) −22.1868 −1.00026
\(493\) 0 0
\(494\) −54.8470 −2.46768
\(495\) −3.03256 −0.136303
\(496\) 3.19413 0.143421
\(497\) −8.14050 −0.365151
\(498\) 33.0796 1.48233
\(499\) 17.5627 0.786213 0.393106 0.919493i \(-0.371400\pi\)
0.393106 + 0.919493i \(0.371400\pi\)
\(500\) −20.5755 −0.920166
\(501\) 2.57560 0.115069
\(502\) −13.3693 −0.596702
\(503\) 7.62305 0.339895 0.169948 0.985453i \(-0.445640\pi\)
0.169948 + 0.985453i \(0.445640\pi\)
\(504\) 4.39344 0.195699
\(505\) −1.40057 −0.0623247
\(506\) 17.1212 0.761130
\(507\) 2.18415 0.0970014
\(508\) −17.3384 −0.769266
\(509\) 17.2662 0.765310 0.382655 0.923891i \(-0.375010\pi\)
0.382655 + 0.923891i \(0.375010\pi\)
\(510\) −9.08277 −0.402192
\(511\) −1.28494 −0.0568422
\(512\) −6.08081 −0.268736
\(513\) 7.37607 0.325661
\(514\) 17.9079 0.789884
\(515\) −9.80555 −0.432084
\(516\) −32.8638 −1.44675
\(517\) 41.5595 1.82778
\(518\) −11.4518 −0.503161
\(519\) −13.0654 −0.573507
\(520\) 5.74431 0.251905
\(521\) 13.2985 0.582616 0.291308 0.956629i \(-0.405910\pi\)
0.291308 + 0.956629i \(0.405910\pi\)
\(522\) 0 0
\(523\) −1.96887 −0.0860928 −0.0430464 0.999073i \(-0.513706\pi\)
−0.0430464 + 0.999073i \(0.513706\pi\)
\(524\) −25.9962 −1.13565
\(525\) −7.89355 −0.344503
\(526\) −10.4689 −0.456464
\(527\) 34.2533 1.49210
\(528\) −2.35401 −0.102445
\(529\) −19.9910 −0.869173
\(530\) −19.3266 −0.839493
\(531\) −6.64954 −0.288565
\(532\) 40.1101 1.73899
\(533\) −23.4465 −1.01558
\(534\) 3.76545 0.162947
\(535\) −3.24545 −0.140313
\(536\) 11.6370 0.502642
\(537\) −0.551360 −0.0237930
\(538\) −61.8925 −2.66838
\(539\) 17.2290 0.742108
\(540\) −2.16188 −0.0930326
\(541\) 23.1317 0.994510 0.497255 0.867604i \(-0.334341\pi\)
0.497255 + 0.867604i \(0.334341\pi\)
\(542\) 8.88582 0.381679
\(543\) −0.881620 −0.0378339
\(544\) −36.1300 −1.54906
\(545\) −9.35329 −0.400651
\(546\) 12.9930 0.556050
\(547\) 3.78367 0.161778 0.0808890 0.996723i \(-0.474224\pi\)
0.0808890 + 0.996723i \(0.474224\pi\)
\(548\) 56.5429 2.41539
\(549\) 1.89863 0.0810314
\(550\) −44.5873 −1.90121
\(551\) 0 0
\(552\) 4.36149 0.185637
\(553\) −11.6958 −0.497354
\(554\) −60.1787 −2.55675
\(555\) 2.01362 0.0854735
\(556\) −63.5713 −2.69602
\(557\) −18.1703 −0.769899 −0.384950 0.922938i \(-0.625781\pi\)
−0.384950 + 0.922938i \(0.625781\pi\)
\(558\) 13.3926 0.566954
\(559\) −34.7297 −1.46891
\(560\) 0.654566 0.0276605
\(561\) −25.2440 −1.06580
\(562\) −28.3141 −1.19436
\(563\) 42.0074 1.77040 0.885201 0.465208i \(-0.154021\pi\)
0.885201 + 0.465208i \(0.154021\pi\)
\(564\) 29.6274 1.24754
\(565\) 2.11380 0.0889282
\(566\) 39.5892 1.66406
\(567\) −1.74736 −0.0733822
\(568\) −11.7136 −0.491492
\(569\) −29.0279 −1.21691 −0.608457 0.793587i \(-0.708211\pi\)
−0.608457 + 0.793587i \(0.708211\pi\)
\(570\) −11.5853 −0.485256
\(571\) 11.0087 0.460700 0.230350 0.973108i \(-0.426013\pi\)
0.230350 + 0.973108i \(0.426013\pi\)
\(572\) 44.6787 1.86811
\(573\) 1.63034 0.0681083
\(574\) 28.1662 1.17563
\(575\) −7.83616 −0.326791
\(576\) −13.0479 −0.543661
\(577\) 17.3892 0.723921 0.361960 0.932194i \(-0.382108\pi\)
0.361960 + 0.932194i \(0.382108\pi\)
\(578\) −37.1714 −1.54612
\(579\) 7.08096 0.294275
\(580\) 0 0
\(581\) −25.5649 −1.06061
\(582\) 12.8381 0.532157
\(583\) −53.7150 −2.22465
\(584\) −1.84893 −0.0765094
\(585\) −2.28463 −0.0944578
\(586\) −13.4427 −0.555313
\(587\) 5.00210 0.206459 0.103229 0.994658i \(-0.467082\pi\)
0.103229 + 0.994658i \(0.467082\pi\)
\(588\) 12.2824 0.506519
\(589\) 43.6911 1.80026
\(590\) 10.4442 0.429980
\(591\) −13.7732 −0.566552
\(592\) 1.56307 0.0642417
\(593\) 11.4607 0.470634 0.235317 0.971919i \(-0.424387\pi\)
0.235317 + 0.971919i \(0.424387\pi\)
\(594\) −9.87009 −0.404975
\(595\) 7.01945 0.287770
\(596\) −54.4466 −2.23022
\(597\) 5.84299 0.239138
\(598\) 12.8986 0.527461
\(599\) 26.7654 1.09361 0.546803 0.837262i \(-0.315845\pi\)
0.546803 + 0.837262i \(0.315845\pi\)
\(600\) −11.3583 −0.463699
\(601\) −9.36535 −0.382021 −0.191010 0.981588i \(-0.561176\pi\)
−0.191010 + 0.981588i \(0.561176\pi\)
\(602\) 41.7206 1.70040
\(603\) −4.62828 −0.188478
\(604\) 61.3489 2.49625
\(605\) 5.59681 0.227543
\(606\) −4.55846 −0.185175
\(607\) −38.6946 −1.57057 −0.785283 0.619137i \(-0.787483\pi\)
−0.785283 + 0.619137i \(0.787483\pi\)
\(608\) −46.0848 −1.86899
\(609\) 0 0
\(610\) −2.98210 −0.120742
\(611\) 31.3096 1.26665
\(612\) −17.9962 −0.727455
\(613\) 30.0381 1.21323 0.606613 0.794997i \(-0.292528\pi\)
0.606613 + 0.794997i \(0.292528\pi\)
\(614\) 27.6598 1.11626
\(615\) −4.95261 −0.199708
\(616\) −19.1791 −0.772747
\(617\) −44.5841 −1.79489 −0.897444 0.441128i \(-0.854579\pi\)
−0.897444 + 0.441128i \(0.854579\pi\)
\(618\) −31.9142 −1.28378
\(619\) 15.9491 0.641049 0.320524 0.947240i \(-0.396141\pi\)
0.320524 + 0.947240i \(0.396141\pi\)
\(620\) −12.8056 −0.514285
\(621\) −1.73466 −0.0696093
\(622\) −23.5340 −0.943628
\(623\) −2.91006 −0.116589
\(624\) −1.77344 −0.0709943
\(625\) 17.9942 0.719766
\(626\) −17.1205 −0.684274
\(627\) −32.1995 −1.28592
\(628\) 62.7706 2.50482
\(629\) 16.7621 0.668348
\(630\) 2.74451 0.109344
\(631\) −8.28342 −0.329758 −0.164879 0.986314i \(-0.552723\pi\)
−0.164879 + 0.986314i \(0.552723\pi\)
\(632\) −16.8294 −0.669437
\(633\) −23.4620 −0.932530
\(634\) 16.5160 0.655932
\(635\) −3.87032 −0.153589
\(636\) −38.2929 −1.51841
\(637\) 12.9798 0.514279
\(638\) 0 0
\(639\) 4.65874 0.184297
\(640\) 11.8132 0.466959
\(641\) −1.48489 −0.0586497 −0.0293248 0.999570i \(-0.509336\pi\)
−0.0293248 + 0.999570i \(0.509336\pi\)
\(642\) −10.5630 −0.416888
\(643\) 47.4253 1.87027 0.935136 0.354289i \(-0.115277\pi\)
0.935136 + 0.354289i \(0.115277\pi\)
\(644\) −9.43283 −0.371706
\(645\) −7.33595 −0.288853
\(646\) −96.4402 −3.79439
\(647\) −15.0276 −0.590796 −0.295398 0.955374i \(-0.595452\pi\)
−0.295398 + 0.955374i \(0.595452\pi\)
\(648\) −2.51433 −0.0987721
\(649\) 29.0278 1.13944
\(650\) −33.5906 −1.31753
\(651\) −10.3502 −0.405657
\(652\) −26.9301 −1.05466
\(653\) 19.3474 0.757121 0.378560 0.925577i \(-0.376419\pi\)
0.378560 + 0.925577i \(0.376419\pi\)
\(654\) −30.4422 −1.19039
\(655\) −5.80295 −0.226740
\(656\) −3.84445 −0.150100
\(657\) 0.735359 0.0286891
\(658\) −37.6120 −1.46627
\(659\) 29.7738 1.15982 0.579912 0.814679i \(-0.303087\pi\)
0.579912 + 0.814679i \(0.303087\pi\)
\(660\) 9.43747 0.367353
\(661\) −34.7735 −1.35253 −0.676266 0.736657i \(-0.736403\pi\)
−0.676266 + 0.736657i \(0.736403\pi\)
\(662\) −45.7149 −1.77676
\(663\) −19.0180 −0.738599
\(664\) −36.7861 −1.42758
\(665\) 8.95350 0.347202
\(666\) 6.55375 0.253953
\(667\) 0 0
\(668\) −8.01539 −0.310125
\(669\) 3.33324 0.128870
\(670\) 7.26946 0.280844
\(671\) −8.28825 −0.319964
\(672\) 10.9173 0.421144
\(673\) 15.4494 0.595532 0.297766 0.954639i \(-0.403759\pi\)
0.297766 + 0.954639i \(0.403759\pi\)
\(674\) −51.0208 −1.96525
\(675\) 4.51742 0.173875
\(676\) −6.79717 −0.261430
\(677\) 13.4157 0.515608 0.257804 0.966197i \(-0.417001\pi\)
0.257804 + 0.966197i \(0.417001\pi\)
\(678\) 6.87980 0.264217
\(679\) −9.92170 −0.380760
\(680\) 10.1005 0.387336
\(681\) 8.50125 0.325768
\(682\) −58.4640 −2.23870
\(683\) −33.1479 −1.26837 −0.634185 0.773181i \(-0.718664\pi\)
−0.634185 + 0.773181i \(0.718664\pi\)
\(684\) −22.9547 −0.877695
\(685\) 12.6217 0.482250
\(686\) −43.2478 −1.65121
\(687\) 24.9056 0.950208
\(688\) −5.69451 −0.217101
\(689\) −40.4671 −1.54168
\(690\) 2.72456 0.103722
\(691\) −13.0512 −0.496490 −0.248245 0.968697i \(-0.579854\pi\)
−0.248245 + 0.968697i \(0.579854\pi\)
\(692\) 40.6601 1.54567
\(693\) 7.62791 0.289760
\(694\) −56.6573 −2.15068
\(695\) −14.1906 −0.538279
\(696\) 0 0
\(697\) −41.2272 −1.56159
\(698\) −31.0543 −1.17542
\(699\) 6.81039 0.257593
\(700\) 24.5651 0.928475
\(701\) −16.0420 −0.605898 −0.302949 0.953007i \(-0.597971\pi\)
−0.302949 + 0.953007i \(0.597971\pi\)
\(702\) −7.43580 −0.280646
\(703\) 21.3805 0.806380
\(704\) 56.9591 2.14673
\(705\) 6.61351 0.249079
\(706\) 45.3787 1.70785
\(707\) 3.52292 0.132493
\(708\) 20.6937 0.777716
\(709\) 23.4747 0.881610 0.440805 0.897603i \(-0.354693\pi\)
0.440805 + 0.897603i \(0.354693\pi\)
\(710\) −7.31732 −0.274614
\(711\) 6.69339 0.251022
\(712\) −4.18737 −0.156928
\(713\) −10.2750 −0.384801
\(714\) 22.8463 0.855000
\(715\) 9.97331 0.372981
\(716\) 1.71586 0.0641247
\(717\) −4.88184 −0.182316
\(718\) 76.3648 2.84991
\(719\) −24.3340 −0.907507 −0.453753 0.891127i \(-0.649915\pi\)
−0.453753 + 0.891127i \(0.649915\pi\)
\(720\) −0.374603 −0.0139606
\(721\) 24.6643 0.918546
\(722\) −80.0534 −2.97928
\(723\) 3.85069 0.143209
\(724\) 2.74365 0.101967
\(725\) 0 0
\(726\) 18.2160 0.676059
\(727\) −16.1534 −0.599096 −0.299548 0.954081i \(-0.596836\pi\)
−0.299548 + 0.954081i \(0.596836\pi\)
\(728\) −14.4489 −0.535512
\(729\) 1.00000 0.0370370
\(730\) −1.15500 −0.0427485
\(731\) −61.0669 −2.25864
\(732\) −5.90862 −0.218389
\(733\) 11.6756 0.431247 0.215623 0.976477i \(-0.430822\pi\)
0.215623 + 0.976477i \(0.430822\pi\)
\(734\) 69.6880 2.57223
\(735\) 2.74172 0.101130
\(736\) 10.8379 0.399491
\(737\) 20.2042 0.744233
\(738\) −16.1193 −0.593359
\(739\) 23.4275 0.861796 0.430898 0.902401i \(-0.358197\pi\)
0.430898 + 0.902401i \(0.358197\pi\)
\(740\) −6.26649 −0.230361
\(741\) −24.2580 −0.891141
\(742\) 48.6130 1.78464
\(743\) −18.7709 −0.688637 −0.344318 0.938853i \(-0.611890\pi\)
−0.344318 + 0.938853i \(0.611890\pi\)
\(744\) −14.8933 −0.546013
\(745\) −12.1537 −0.445279
\(746\) −62.6879 −2.29517
\(747\) 14.6306 0.535306
\(748\) 78.5607 2.87246
\(749\) 8.16340 0.298284
\(750\) −14.9487 −0.545848
\(751\) 15.7969 0.576438 0.288219 0.957564i \(-0.406937\pi\)
0.288219 + 0.957564i \(0.406937\pi\)
\(752\) 5.13372 0.187207
\(753\) −5.91306 −0.215484
\(754\) 0 0
\(755\) 13.6945 0.498393
\(756\) 5.43787 0.197773
\(757\) −37.1786 −1.35128 −0.675639 0.737232i \(-0.736132\pi\)
−0.675639 + 0.737232i \(0.736132\pi\)
\(758\) 23.5493 0.855351
\(759\) 7.57245 0.274863
\(760\) 12.8835 0.467332
\(761\) 4.88513 0.177086 0.0885429 0.996072i \(-0.471779\pi\)
0.0885429 + 0.996072i \(0.471779\pi\)
\(762\) −12.5968 −0.456333
\(763\) 23.5267 0.851724
\(764\) −5.07369 −0.183560
\(765\) −4.01718 −0.145241
\(766\) −8.43392 −0.304730
\(767\) 21.8686 0.789631
\(768\) 12.3529 0.445747
\(769\) 7.88824 0.284457 0.142229 0.989834i \(-0.454573\pi\)
0.142229 + 0.989834i \(0.454573\pi\)
\(770\) −11.9809 −0.431761
\(771\) 7.92041 0.285247
\(772\) −22.0363 −0.793104
\(773\) −38.0905 −1.37002 −0.685009 0.728534i \(-0.740202\pi\)
−0.685009 + 0.728534i \(0.740202\pi\)
\(774\) −23.8764 −0.858218
\(775\) 26.7583 0.961185
\(776\) −14.2766 −0.512501
\(777\) −5.06494 −0.181704
\(778\) 57.4961 2.06134
\(779\) −52.5864 −1.88410
\(780\) 7.10988 0.254575
\(781\) −20.3373 −0.727724
\(782\) 22.6802 0.811041
\(783\) 0 0
\(784\) 2.12825 0.0760091
\(785\) 14.0118 0.500104
\(786\) −18.8869 −0.673673
\(787\) 7.47041 0.266291 0.133146 0.991096i \(-0.457492\pi\)
0.133146 + 0.991096i \(0.457492\pi\)
\(788\) 42.8628 1.52692
\(789\) −4.63022 −0.164840
\(790\) −10.5131 −0.374038
\(791\) −5.31692 −0.189048
\(792\) 10.9760 0.390016
\(793\) −6.24410 −0.221735
\(794\) 69.9114 2.48106
\(795\) −8.54787 −0.303162
\(796\) −18.1837 −0.644503
\(797\) −25.2857 −0.895667 −0.447833 0.894117i \(-0.647804\pi\)
−0.447833 + 0.894117i \(0.647804\pi\)
\(798\) 29.1410 1.03158
\(799\) 55.0531 1.94764
\(800\) −28.2243 −0.997879
\(801\) 1.66540 0.0588442
\(802\) −5.61278 −0.198194
\(803\) −3.21013 −0.113283
\(804\) 14.4034 0.507970
\(805\) −2.10563 −0.0742135
\(806\) −44.0449 −1.55142
\(807\) −27.3742 −0.963616
\(808\) 5.06923 0.178335
\(809\) 49.3907 1.73648 0.868242 0.496142i \(-0.165250\pi\)
0.868242 + 0.496142i \(0.165250\pi\)
\(810\) −1.57066 −0.0551875
\(811\) 14.0420 0.493080 0.246540 0.969133i \(-0.420706\pi\)
0.246540 + 0.969133i \(0.420706\pi\)
\(812\) 0 0
\(813\) 3.93007 0.137833
\(814\) −28.6097 −1.00277
\(815\) −6.01142 −0.210571
\(816\) −3.11832 −0.109163
\(817\) −77.8925 −2.72511
\(818\) 1.30082 0.0454821
\(819\) 5.74662 0.200803
\(820\) 15.4128 0.538237
\(821\) 37.3810 1.30461 0.652303 0.757959i \(-0.273803\pi\)
0.652303 + 0.757959i \(0.273803\pi\)
\(822\) 41.0799 1.43283
\(823\) −45.9010 −1.60001 −0.800005 0.599994i \(-0.795170\pi\)
−0.800005 + 0.599994i \(0.795170\pi\)
\(824\) 35.4902 1.23636
\(825\) −19.7203 −0.686573
\(826\) −26.2707 −0.914074
\(827\) 6.14281 0.213606 0.106803 0.994280i \(-0.465939\pi\)
0.106803 + 0.994280i \(0.465939\pi\)
\(828\) 5.39833 0.187605
\(829\) 28.4301 0.987417 0.493709 0.869627i \(-0.335641\pi\)
0.493709 + 0.869627i \(0.335641\pi\)
\(830\) −22.9798 −0.797639
\(831\) −26.6161 −0.923304
\(832\) 42.9111 1.48768
\(833\) 22.8230 0.790771
\(834\) −46.1862 −1.59930
\(835\) −1.78922 −0.0619185
\(836\) 100.206 3.46571
\(837\) 5.92335 0.204741
\(838\) 69.4877 2.40041
\(839\) 18.0221 0.622194 0.311097 0.950378i \(-0.399304\pi\)
0.311097 + 0.950378i \(0.399304\pi\)
\(840\) −3.05204 −0.105305
\(841\) 0 0
\(842\) 52.3698 1.80478
\(843\) −12.5229 −0.431312
\(844\) 73.0148 2.51327
\(845\) −1.51729 −0.0521962
\(846\) 21.5250 0.740046
\(847\) −14.0779 −0.483722
\(848\) −6.63526 −0.227856
\(849\) 17.5097 0.600932
\(850\) −59.0640 −2.02588
\(851\) −5.02812 −0.172362
\(852\) −14.4982 −0.496702
\(853\) −21.4123 −0.733144 −0.366572 0.930390i \(-0.619469\pi\)
−0.366572 + 0.930390i \(0.619469\pi\)
\(854\) 7.50101 0.256679
\(855\) −5.12402 −0.175238
\(856\) 11.7466 0.401489
\(857\) 20.2783 0.692693 0.346346 0.938107i \(-0.387422\pi\)
0.346346 + 0.938107i \(0.387422\pi\)
\(858\) 32.4602 1.10817
\(859\) −12.5045 −0.426650 −0.213325 0.976981i \(-0.568429\pi\)
−0.213325 + 0.976981i \(0.568429\pi\)
\(860\) 22.8298 0.778491
\(861\) 12.4575 0.424550
\(862\) 78.0026 2.65678
\(863\) 36.3437 1.23716 0.618578 0.785724i \(-0.287709\pi\)
0.618578 + 0.785724i \(0.287709\pi\)
\(864\) −6.24788 −0.212557
\(865\) 9.07628 0.308603
\(866\) −37.3456 −1.26906
\(867\) −16.4403 −0.558343
\(868\) 32.2104 1.09329
\(869\) −29.2193 −0.991196
\(870\) 0 0
\(871\) 15.2212 0.515752
\(872\) 33.8533 1.14642
\(873\) 5.67811 0.192175
\(874\) 28.9292 0.978543
\(875\) 11.5528 0.390556
\(876\) −2.28847 −0.0773203
\(877\) 8.06605 0.272371 0.136186 0.990683i \(-0.456516\pi\)
0.136186 + 0.990683i \(0.456516\pi\)
\(878\) 57.2558 1.93229
\(879\) −5.94551 −0.200537
\(880\) 1.63529 0.0551256
\(881\) −15.6384 −0.526870 −0.263435 0.964677i \(-0.584855\pi\)
−0.263435 + 0.964677i \(0.584855\pi\)
\(882\) 8.92350 0.300470
\(883\) 7.14821 0.240556 0.120278 0.992740i \(-0.461621\pi\)
0.120278 + 0.992740i \(0.461621\pi\)
\(884\) 59.1851 1.99061
\(885\) 4.61931 0.155276
\(886\) −18.8039 −0.631731
\(887\) −42.9360 −1.44165 −0.720825 0.693117i \(-0.756237\pi\)
−0.720825 + 0.693117i \(0.756237\pi\)
\(888\) −7.28810 −0.244573
\(889\) 9.73518 0.326508
\(890\) −2.61579 −0.0876815
\(891\) −4.36539 −0.146246
\(892\) −10.3732 −0.347321
\(893\) 70.2217 2.34988
\(894\) −39.5569 −1.32298
\(895\) 0.383020 0.0128029
\(896\) −29.7143 −0.992686
\(897\) 5.70484 0.190479
\(898\) 48.6873 1.62472
\(899\) 0 0
\(900\) −14.0584 −0.468614
\(901\) −71.1553 −2.37053
\(902\) 70.3671 2.34297
\(903\) 18.4524 0.614058
\(904\) −7.65068 −0.254458
\(905\) 0.612445 0.0203584
\(906\) 44.5715 1.48079
\(907\) 4.67367 0.155187 0.0775934 0.996985i \(-0.475276\pi\)
0.0775934 + 0.996985i \(0.475276\pi\)
\(908\) −26.4563 −0.877983
\(909\) −2.01614 −0.0668711
\(910\) −9.02601 −0.299209
\(911\) 30.7046 1.01729 0.508645 0.860977i \(-0.330147\pi\)
0.508645 + 0.860977i \(0.330147\pi\)
\(912\) −3.97750 −0.131708
\(913\) −63.8684 −2.11373
\(914\) −70.4644 −2.33075
\(915\) −1.31894 −0.0436028
\(916\) −77.5075 −2.56092
\(917\) 14.5964 0.482015
\(918\) −13.0747 −0.431531
\(919\) −5.90273 −0.194713 −0.0973565 0.995250i \(-0.531039\pi\)
−0.0973565 + 0.995250i \(0.531039\pi\)
\(920\) −3.02985 −0.0998911
\(921\) 12.2335 0.403108
\(922\) −7.04090 −0.231880
\(923\) −15.3214 −0.504311
\(924\) −23.7384 −0.780938
\(925\) 13.0943 0.430538
\(926\) 41.0755 1.34982
\(927\) −14.1152 −0.463603
\(928\) 0 0
\(929\) 20.7621 0.681183 0.340592 0.940211i \(-0.389373\pi\)
0.340592 + 0.940211i \(0.389373\pi\)
\(930\) −9.30359 −0.305077
\(931\) 29.1114 0.954087
\(932\) −21.1943 −0.694242
\(933\) −10.4087 −0.340767
\(934\) 24.7757 0.810686
\(935\) 17.5366 0.573507
\(936\) 8.26899 0.270280
\(937\) 45.1087 1.47364 0.736819 0.676090i \(-0.236327\pi\)
0.736819 + 0.676090i \(0.236327\pi\)
\(938\) −18.2852 −0.597032
\(939\) −7.57216 −0.247108
\(940\) −20.5816 −0.671297
\(941\) −22.6049 −0.736900 −0.368450 0.929648i \(-0.620111\pi\)
−0.368450 + 0.929648i \(0.620111\pi\)
\(942\) 45.6045 1.48587
\(943\) 12.3669 0.402722
\(944\) 3.58572 0.116705
\(945\) 1.21386 0.0394868
\(946\) 104.230 3.38880
\(947\) 28.8923 0.938874 0.469437 0.882966i \(-0.344457\pi\)
0.469437 + 0.882966i \(0.344457\pi\)
\(948\) −20.8302 −0.676532
\(949\) −2.41841 −0.0785049
\(950\) −75.3378 −2.44428
\(951\) 7.30476 0.236873
\(952\) −25.4062 −0.823419
\(953\) 11.4122 0.369678 0.184839 0.982769i \(-0.440824\pi\)
0.184839 + 0.982769i \(0.440824\pi\)
\(954\) −27.8208 −0.900732
\(955\) −1.13256 −0.0366489
\(956\) 15.1925 0.491362
\(957\) 0 0
\(958\) 35.5171 1.14751
\(959\) −31.7478 −1.02519
\(960\) 9.06411 0.292543
\(961\) 4.08611 0.131810
\(962\) −21.5536 −0.694917
\(963\) −4.67185 −0.150548
\(964\) −11.9835 −0.385964
\(965\) −4.91901 −0.158349
\(966\) −6.85319 −0.220498
\(967\) −29.5811 −0.951265 −0.475632 0.879644i \(-0.657781\pi\)
−0.475632 + 0.879644i \(0.657781\pi\)
\(968\) −20.2571 −0.651088
\(969\) −42.6541 −1.37025
\(970\) −8.91840 −0.286352
\(971\) 20.4243 0.655447 0.327723 0.944774i \(-0.393719\pi\)
0.327723 + 0.944774i \(0.393719\pi\)
\(972\) −3.11205 −0.0998191
\(973\) 35.6941 1.14430
\(974\) 1.71604 0.0549855
\(975\) −14.8566 −0.475793
\(976\) −1.02382 −0.0327718
\(977\) 14.4236 0.461453 0.230727 0.973019i \(-0.425890\pi\)
0.230727 + 0.973019i \(0.425890\pi\)
\(978\) −19.5654 −0.625633
\(979\) −7.27015 −0.232355
\(980\) −8.53238 −0.272557
\(981\) −13.4642 −0.429877
\(982\) 46.0093 1.46822
\(983\) 48.2410 1.53865 0.769325 0.638858i \(-0.220593\pi\)
0.769325 + 0.638858i \(0.220593\pi\)
\(984\) 17.9255 0.571443
\(985\) 9.56796 0.304861
\(986\) 0 0
\(987\) −16.6352 −0.529505
\(988\) 75.4922 2.40173
\(989\) 18.3182 0.582486
\(990\) 6.85656 0.217916
\(991\) −9.81769 −0.311869 −0.155935 0.987767i \(-0.549839\pi\)
−0.155935 + 0.987767i \(0.549839\pi\)
\(992\) −37.0084 −1.17502
\(993\) −20.2190 −0.641631
\(994\) 18.4055 0.583789
\(995\) −4.05902 −0.128679
\(996\) −45.5312 −1.44271
\(997\) 26.8908 0.851641 0.425820 0.904808i \(-0.359986\pi\)
0.425820 + 0.904808i \(0.359986\pi\)
\(998\) −39.7089 −1.25696
\(999\) 2.89863 0.0917085
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2523.2.a.k.1.1 6
3.2 odd 2 7569.2.a.bb.1.6 6
29.28 even 2 2523.2.a.l.1.6 yes 6
87.86 odd 2 7569.2.a.z.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2523.2.a.k.1.1 6 1.1 even 1 trivial
2523.2.a.l.1.6 yes 6 29.28 even 2
7569.2.a.z.1.1 6 87.86 odd 2
7569.2.a.bb.1.6 6 3.2 odd 2