L(s) = 1 | + 2-s + 9·3-s − 3·4-s + 9·6-s + 5·7-s + 45·9-s + 3·11-s − 27·12-s + 5·13-s + 5·14-s + 16-s + 16·17-s + 45·18-s − 19-s + 45·21-s + 3·22-s − 10·23-s − 18·25-s + 5·26-s + 165·27-s − 15·28-s − 4·31-s − 11·32-s + 27·33-s + 16·34-s − 135·36-s + 25·37-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 5.19·3-s − 3/2·4-s + 3.67·6-s + 1.88·7-s + 15·9-s + 0.904·11-s − 7.79·12-s + 1.38·13-s + 1.33·14-s + 1/4·16-s + 3.88·17-s + 10.6·18-s − 0.229·19-s + 9.81·21-s + 0.639·22-s − 2.08·23-s − 3.59·25-s + 0.980·26-s + 31.7·27-s − 2.83·28-s − 0.718·31-s − 1.94·32-s + 4.70·33-s + 2.74·34-s − 22.5·36-s + 4.10·37-s + ⋯ |
Λ(s)=(=((39⋅2918)s/2ΓC(s)9L(s)Λ(2−s)
Λ(s)=(=((39⋅2918)s/2ΓC(s+1/2)9L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
784.4245991 |
L(21) |
≈ |
784.4245991 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | (1−T)9 |
| 29 | 1 |
good | 2 | 1−T+p2T2−7T3+9pT4−27T5+55T6−39pT7+67pT8−183T9+67p2T10−39p3T11+55p3T12−27p4T13+9p6T14−7p6T15+p9T16−p8T17+p9T18 |
| 5 | 1+18T2+24T3+177T4+337T5+1492T6+2633T7+9457T8+15649T9+9457pT10+2633p2T11+1492p3T12+337p4T13+177p5T14+24p6T15+18p7T16+p9T18 |
| 7 | 1−5T+31T2−128T3+463T4−1405T5+4100T6−9956T7+25827T8−65596T9+25827pT10−9956p2T11+4100p3T12−1405p4T13+463p5T14−128p6T15+31p7T16−5p8T17+p9T18 |
| 11 | 1−3T+49T2−52T3+991T4+513T5+13154T6+27866T7+1147p2T8+445824T9+1147p3T10+27866p2T11+13154p3T12+513p4T13+991p5T14−52p6T15+49p7T16−3p8T17+p9T18 |
| 13 | 1−5T+102T2−33pT3+4788T4−17120T5+135677T6−412188T7+2557299T8−6530585T9+2557299pT10−412188p2T11+135677p3T12−17120p4T13+4788p5T14−33p7T15+102p7T16−5p8T17+p9T18 |
| 17 | 1−16T+190T2−1544T3+11104T4−66663T5+376150T6−1868520T7+8820919T8−37225411T9+8820919pT10−1868520p2T11+376150p3T12−66663p4T13+11104p5T14−1544p6T15+190p7T16−16p8T17+p9T18 |
| 19 | 1+T+144T2+154T3+9521T4+10329T5+382344T6+394400T7+10349226T8+9381584T9+10349226pT10+394400p2T11+382344p3T12+10329p4T13+9521p5T14+154p6T15+144p7T16+p8T17+p9T18 |
| 23 | 1+10T+8pT2+1416T3+15023T4+94178T5+734858T6+3853590T7+24114842T8+106498388T9+24114842pT10+3853590p2T11+734858p3T12+94178p4T13+15023p5T14+1416p6T15+8p8T16+10p8T17+p9T18 |
| 31 | 1+4T+95T2+604T3+4724T4+31293T5+171357T6+961972T7+4798255T8+27630886T9+4798255pT10+961972p2T11+171357p3T12+31293p4T13+4724p5T14+604p6T15+95p7T16+4p8T17+p9T18 |
| 37 | 1−25T+476T2−6436T3+74730T4−726039T5+6338716T6−48776974T7+344118462T8−2179787403T9+344118462pT10−48776974p2T11+6338716p3T12−726039p4T13+74730p5T14−6436p6T15+476p7T16−25p8T17+p9T18 |
| 41 | 1−34T+788T2−12970T3+175640T4−1971845T5+19301782T6−164588816T7+1253221727T8−8463182695T9+1253221727pT10−164588816p2T11+19301782p3T12−1971845p4T13+175640p5T14−12970p6T15+788p7T16−34p8T17+p9T18 |
| 43 | 1−12T+217T2−2702T3+28804T4−281927T5+2520869T6−19935336T7+147994305T8−1019469718T9+147994305pT10−19935336p2T11+2520869p3T12−281927p4T13+28804p5T14−2702p6T15+217p7T16−12p8T17+p9T18 |
| 47 | 1−8T+268T2−2089T3+38781T4−267015T5+3604314T6−21845867T7+235040160T8−1222532802T9+235040160pT10−21845867p2T11+3604314p3T12−267015p4T13+38781p5T14−2089p6T15+268p7T16−8p8T17+p9T18 |
| 53 | 1+32T+777T2+13556T3+199931T4+2475132T5+27002767T6+258706391T7+2223873503T8+17047663403T9+2223873503pT10+258706391p2T11+27002767p3T12+2475132p4T13+199931p5T14+13556p6T15+777p7T16+32p8T17+p9T18 |
| 59 | 1−10T+263T2−28pT3+30369T4−110304T5+2000488T6−1128580T7+96017121T8+142377228T9+96017121pT10−1128580p2T11+2000488p3T12−110304p4T13+30369p5T14−28p7T15+263p7T16−10p8T17+p9T18 |
| 61 | 1−51T+1613T2−36289T3+10652pT4−9576025T5+1971498pT6−1302879380T7+12352053601T8−102748700237T9+12352053601pT10−1302879380p2T11+1971498p4T12−9576025p4T13+10652p6T14−36289p6T15+1613p7T16−51p8T17+p9T18 |
| 67 | 1−7T+271T2−2196T3+43720T4−328746T5+4849035T6−33932684T7+408787801T8−2583256998T9+408787801pT10−33932684p2T11+4849035p3T12−328746p4T13+43720p5T14−2196p6T15+271p7T16−7p8T17+p9T18 |
| 71 | 1−7T+403T2−2578T3+79996T4−463984T5+10354421T6−54242872T7+972589151T8−4513565462T9+972589151pT10−54242872p2T11+10354421p3T12−463984p4T13+79996p5T14−2578p6T15+403p7T16−7p8T17+p9T18 |
| 73 | 1−17T+401T2−6426T3+92991T4−1179384T5+13953041T6−144174105T7+1416502918T8−12512366475T9+1416502918pT10−144174105p2T11+13953041p3T12−1179384p4T13+92991p5T14−6426p6T15+401p7T16−17p8T17+p9T18 |
| 79 | 1−13T+543T2−6692T3+144736T4−1578690T5+24184789T6−226132206T7+2738544831T8−21609843142T9+2738544831pT10−226132206p2T11+24184789p3T12−1578690p4T13+144736p5T14−6692p6T15+543p7T16−13p8T17+p9T18 |
| 83 | 1+31T+1023T2+20178T3+391292T4+5722828T5+81071705T6+933533148T7+10375704955T8+96245293542T9+10375704955pT10+933533148p2T11+81071705p3T12+5722828p4T13+391292p5T14+20178p6T15+1023p7T16+31p8T17+p9T18 |
| 89 | 1+32T+894T2+16539T3+282952T4+3946842T5+51974585T6+593765484T7+6445461922T8+62230806243T9+6445461922pT10+593765484p2T11+51974585p3T12+3946842p4T13+282952p5T14+16539p6T15+894p7T16+32p8T17+p9T18 |
| 97 | 1−16T+446T2−5487T3+94470T4−931906T5+13217605T6−110931128T7+1428628652T8−11184892691T9+1428628652pT10−110931128p2T11+13217605p3T12−931906p4T13+94470p5T14−5487p6T15+446p7T16−16p8T17+p9T18 |
show more | |
show less | |
L(s)=p∏ j=1∏18(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.53269985047208945955943788342, −3.35728049878546155691485862163, −3.31301686238696893621401657194, −3.14290691604254052858212129524, −2.83153064707314165880836621751, −2.80586452443707872763580330191, −2.74718352081279154359818833385, −2.61124287712323453283774993431, −2.54721740341077306209339293743, −2.48018483363078393814937966698, −2.11288301615040538975344383317, −2.08690429227919172411047336554, −2.07395145273429544543306432019, −2.00507173398224234399566099927, −2.00387167805507805308711083837, −1.75658108574976970475325510291, −1.73961659817377672090806975657, −1.36823080135923419487002372820, −1.22037220261402304154742936630, −1.20156259228613038576132505057, −1.06555775352255085648153426782, −0.848958585214715597394713242811, −0.806989254111012787227852243433, −0.65618362649692908041785953673, −0.41215820423216672000067788353,
0.41215820423216672000067788353, 0.65618362649692908041785953673, 0.806989254111012787227852243433, 0.848958585214715597394713242811, 1.06555775352255085648153426782, 1.20156259228613038576132505057, 1.22037220261402304154742936630, 1.36823080135923419487002372820, 1.73961659817377672090806975657, 1.75658108574976970475325510291, 2.00387167805507805308711083837, 2.00507173398224234399566099927, 2.07395145273429544543306432019, 2.08690429227919172411047336554, 2.11288301615040538975344383317, 2.48018483363078393814937966698, 2.54721740341077306209339293743, 2.61124287712323453283774993431, 2.74718352081279154359818833385, 2.80586452443707872763580330191, 2.83153064707314165880836621751, 3.14290691604254052858212129524, 3.31301686238696893621401657194, 3.35728049878546155691485862163, 3.53269985047208945955943788342
Plot not available for L-functions of degree greater than 10.