Properties

Label 2523.2.a.q.1.8
Level $2523$
Weight $2$
Character 2523.1
Self dual yes
Analytic conductor $20.146$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2523,2,Mod(1,2523)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2523, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2523.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2523 = 3 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2523.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.1462564300\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 14x^{7} + 9x^{6} + 70x^{5} - 23x^{4} - 141x^{3} + 14x^{2} + 84x - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(2.19659\) of defining polynomial
Character \(\chi\) \(=\) 2523.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.19659 q^{2} +1.00000 q^{3} +2.82501 q^{4} -4.07769 q^{5} +2.19659 q^{6} +3.64733 q^{7} +1.81221 q^{8} +1.00000 q^{9} -8.95700 q^{10} +3.52776 q^{11} +2.82501 q^{12} +0.926540 q^{13} +8.01169 q^{14} -4.07769 q^{15} -1.66934 q^{16} -1.61861 q^{17} +2.19659 q^{18} +3.98608 q^{19} -11.5195 q^{20} +3.64733 q^{21} +7.74905 q^{22} +1.54577 q^{23} +1.81221 q^{24} +11.6275 q^{25} +2.03523 q^{26} +1.00000 q^{27} +10.3037 q^{28} -8.95700 q^{30} +1.60775 q^{31} -7.29128 q^{32} +3.52776 q^{33} -3.55543 q^{34} -14.8727 q^{35} +2.82501 q^{36} +5.30404 q^{37} +8.75579 q^{38} +0.926540 q^{39} -7.38960 q^{40} +6.71590 q^{41} +8.01169 q^{42} -4.42936 q^{43} +9.96596 q^{44} -4.07769 q^{45} +3.39542 q^{46} -3.33787 q^{47} -1.66934 q^{48} +6.30302 q^{49} +25.5409 q^{50} -1.61861 q^{51} +2.61748 q^{52} +2.03823 q^{53} +2.19659 q^{54} -14.3851 q^{55} +6.60971 q^{56} +3.98608 q^{57} +7.29049 q^{59} -11.5195 q^{60} +6.00554 q^{61} +3.53156 q^{62} +3.64733 q^{63} -12.6773 q^{64} -3.77814 q^{65} +7.74905 q^{66} +9.48235 q^{67} -4.57260 q^{68} +1.54577 q^{69} -32.6692 q^{70} +8.44759 q^{71} +1.81221 q^{72} -7.56757 q^{73} +11.6508 q^{74} +11.6275 q^{75} +11.2607 q^{76} +12.8669 q^{77} +2.03523 q^{78} -0.287887 q^{79} +6.80706 q^{80} +1.00000 q^{81} +14.7521 q^{82} -6.47754 q^{83} +10.3037 q^{84} +6.60020 q^{85} -9.72949 q^{86} +6.39303 q^{88} -16.5093 q^{89} -8.95700 q^{90} +3.37940 q^{91} +4.36681 q^{92} +1.60775 q^{93} -7.33194 q^{94} -16.2540 q^{95} -7.29128 q^{96} -10.0522 q^{97} +13.8451 q^{98} +3.52776 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + q^{2} + 9 q^{3} + 11 q^{4} + q^{6} + 5 q^{7} + 12 q^{8} + 9 q^{9} + 4 q^{10} + 3 q^{11} + 11 q^{12} + 5 q^{13} + 15 q^{14} - 5 q^{16} + 16 q^{17} + q^{18} - q^{19} + 8 q^{20} + 5 q^{21} + 24 q^{22}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.19659 1.55322 0.776612 0.629979i \(-0.216937\pi\)
0.776612 + 0.629979i \(0.216937\pi\)
\(3\) 1.00000 0.577350
\(4\) 2.82501 1.41250
\(5\) −4.07769 −1.82360 −0.911798 0.410638i \(-0.865306\pi\)
−0.911798 + 0.410638i \(0.865306\pi\)
\(6\) 2.19659 0.896754
\(7\) 3.64733 1.37856 0.689281 0.724495i \(-0.257927\pi\)
0.689281 + 0.724495i \(0.257927\pi\)
\(8\) 1.81221 0.640711
\(9\) 1.00000 0.333333
\(10\) −8.95700 −2.83245
\(11\) 3.52776 1.06366 0.531830 0.846851i \(-0.321504\pi\)
0.531830 + 0.846851i \(0.321504\pi\)
\(12\) 2.82501 0.815510
\(13\) 0.926540 0.256976 0.128488 0.991711i \(-0.458988\pi\)
0.128488 + 0.991711i \(0.458988\pi\)
\(14\) 8.01169 2.14121
\(15\) −4.07769 −1.05285
\(16\) −1.66934 −0.417336
\(17\) −1.61861 −0.392571 −0.196286 0.980547i \(-0.562888\pi\)
−0.196286 + 0.980547i \(0.562888\pi\)
\(18\) 2.19659 0.517741
\(19\) 3.98608 0.914470 0.457235 0.889346i \(-0.348840\pi\)
0.457235 + 0.889346i \(0.348840\pi\)
\(20\) −11.5195 −2.57584
\(21\) 3.64733 0.795913
\(22\) 7.74905 1.65210
\(23\) 1.54577 0.322315 0.161158 0.986929i \(-0.448477\pi\)
0.161158 + 0.986929i \(0.448477\pi\)
\(24\) 1.81221 0.369915
\(25\) 11.6275 2.32550
\(26\) 2.03523 0.399141
\(27\) 1.00000 0.192450
\(28\) 10.3037 1.94722
\(29\) 0 0
\(30\) −8.95700 −1.63532
\(31\) 1.60775 0.288760 0.144380 0.989522i \(-0.453881\pi\)
0.144380 + 0.989522i \(0.453881\pi\)
\(32\) −7.29128 −1.28893
\(33\) 3.52776 0.614105
\(34\) −3.55543 −0.609751
\(35\) −14.8727 −2.51394
\(36\) 2.82501 0.470835
\(37\) 5.30404 0.871979 0.435990 0.899952i \(-0.356398\pi\)
0.435990 + 0.899952i \(0.356398\pi\)
\(38\) 8.75579 1.42038
\(39\) 0.926540 0.148365
\(40\) −7.38960 −1.16840
\(41\) 6.71590 1.04885 0.524423 0.851458i \(-0.324281\pi\)
0.524423 + 0.851458i \(0.324281\pi\)
\(42\) 8.01169 1.23623
\(43\) −4.42936 −0.675471 −0.337736 0.941241i \(-0.609661\pi\)
−0.337736 + 0.941241i \(0.609661\pi\)
\(44\) 9.96596 1.50242
\(45\) −4.07769 −0.607866
\(46\) 3.39542 0.500628
\(47\) −3.33787 −0.486879 −0.243439 0.969916i \(-0.578276\pi\)
−0.243439 + 0.969916i \(0.578276\pi\)
\(48\) −1.66934 −0.240949
\(49\) 6.30302 0.900431
\(50\) 25.5409 3.61203
\(51\) −1.61861 −0.226651
\(52\) 2.61748 0.362980
\(53\) 2.03823 0.279972 0.139986 0.990153i \(-0.455294\pi\)
0.139986 + 0.990153i \(0.455294\pi\)
\(54\) 2.19659 0.298918
\(55\) −14.3851 −1.93969
\(56\) 6.60971 0.883260
\(57\) 3.98608 0.527970
\(58\) 0 0
\(59\) 7.29049 0.949141 0.474571 0.880217i \(-0.342603\pi\)
0.474571 + 0.880217i \(0.342603\pi\)
\(60\) −11.5195 −1.48716
\(61\) 6.00554 0.768930 0.384465 0.923139i \(-0.374386\pi\)
0.384465 + 0.923139i \(0.374386\pi\)
\(62\) 3.53156 0.448509
\(63\) 3.64733 0.459520
\(64\) −12.6773 −1.58466
\(65\) −3.77814 −0.468620
\(66\) 7.74905 0.953842
\(67\) 9.48235 1.15845 0.579227 0.815167i \(-0.303355\pi\)
0.579227 + 0.815167i \(0.303355\pi\)
\(68\) −4.57260 −0.554509
\(69\) 1.54577 0.186089
\(70\) −32.6692 −3.90471
\(71\) 8.44759 1.00255 0.501273 0.865289i \(-0.332865\pi\)
0.501273 + 0.865289i \(0.332865\pi\)
\(72\) 1.81221 0.213570
\(73\) −7.56757 −0.885718 −0.442859 0.896591i \(-0.646036\pi\)
−0.442859 + 0.896591i \(0.646036\pi\)
\(74\) 11.6508 1.35438
\(75\) 11.6275 1.34263
\(76\) 11.2607 1.29169
\(77\) 12.8669 1.46632
\(78\) 2.03523 0.230444
\(79\) −0.287887 −0.0323898 −0.0161949 0.999869i \(-0.505155\pi\)
−0.0161949 + 0.999869i \(0.505155\pi\)
\(80\) 6.80706 0.761053
\(81\) 1.00000 0.111111
\(82\) 14.7521 1.62909
\(83\) −6.47754 −0.711003 −0.355501 0.934676i \(-0.615690\pi\)
−0.355501 + 0.934676i \(0.615690\pi\)
\(84\) 10.3037 1.12423
\(85\) 6.60020 0.715892
\(86\) −9.72949 −1.04916
\(87\) 0 0
\(88\) 6.39303 0.681499
\(89\) −16.5093 −1.74999 −0.874993 0.484136i \(-0.839134\pi\)
−0.874993 + 0.484136i \(0.839134\pi\)
\(90\) −8.95700 −0.944151
\(91\) 3.37940 0.354257
\(92\) 4.36681 0.455272
\(93\) 1.60775 0.166716
\(94\) −7.33194 −0.756232
\(95\) −16.2540 −1.66762
\(96\) −7.29128 −0.744163
\(97\) −10.0522 −1.02064 −0.510322 0.859983i \(-0.670474\pi\)
−0.510322 + 0.859983i \(0.670474\pi\)
\(98\) 13.8451 1.39857
\(99\) 3.52776 0.354554
\(100\) 32.8478 3.28478
\(101\) −8.23922 −0.819833 −0.409917 0.912123i \(-0.634442\pi\)
−0.409917 + 0.912123i \(0.634442\pi\)
\(102\) −3.55543 −0.352040
\(103\) 7.62704 0.751515 0.375757 0.926718i \(-0.377383\pi\)
0.375757 + 0.926718i \(0.377383\pi\)
\(104\) 1.67908 0.164647
\(105\) −14.8727 −1.45142
\(106\) 4.47715 0.434859
\(107\) −16.7576 −1.62002 −0.810011 0.586414i \(-0.800539\pi\)
−0.810011 + 0.586414i \(0.800539\pi\)
\(108\) 2.82501 0.271837
\(109\) −12.7116 −1.21755 −0.608775 0.793343i \(-0.708339\pi\)
−0.608775 + 0.793343i \(0.708339\pi\)
\(110\) −31.5982 −3.01277
\(111\) 5.30404 0.503437
\(112\) −6.08865 −0.575323
\(113\) 8.46482 0.796303 0.398152 0.917320i \(-0.369652\pi\)
0.398152 + 0.917320i \(0.369652\pi\)
\(114\) 8.75579 0.820055
\(115\) −6.30316 −0.587773
\(116\) 0 0
\(117\) 0.926540 0.0856587
\(118\) 16.0142 1.47423
\(119\) −5.90362 −0.541184
\(120\) −7.38960 −0.674575
\(121\) 1.44511 0.131374
\(122\) 13.1917 1.19432
\(123\) 6.71590 0.605552
\(124\) 4.54190 0.407875
\(125\) −27.0250 −2.41719
\(126\) 8.01169 0.713738
\(127\) 17.8052 1.57995 0.789977 0.613137i \(-0.210093\pi\)
0.789977 + 0.613137i \(0.210093\pi\)
\(128\) −13.2642 −1.17240
\(129\) −4.42936 −0.389983
\(130\) −8.29902 −0.727872
\(131\) −11.3299 −0.989897 −0.494949 0.868922i \(-0.664813\pi\)
−0.494949 + 0.868922i \(0.664813\pi\)
\(132\) 9.96596 0.867425
\(133\) 14.5386 1.26065
\(134\) 20.8288 1.79934
\(135\) −4.07769 −0.350951
\(136\) −2.93326 −0.251525
\(137\) −8.31246 −0.710182 −0.355091 0.934832i \(-0.615550\pi\)
−0.355091 + 0.934832i \(0.615550\pi\)
\(138\) 3.39542 0.289038
\(139\) −3.11275 −0.264020 −0.132010 0.991248i \(-0.542143\pi\)
−0.132010 + 0.991248i \(0.542143\pi\)
\(140\) −42.0154 −3.55095
\(141\) −3.33787 −0.281100
\(142\) 18.5559 1.55718
\(143\) 3.26861 0.273335
\(144\) −1.66934 −0.139112
\(145\) 0 0
\(146\) −16.6229 −1.37572
\(147\) 6.30302 0.519864
\(148\) 14.9840 1.23167
\(149\) 15.1558 1.24161 0.620807 0.783963i \(-0.286805\pi\)
0.620807 + 0.783963i \(0.286805\pi\)
\(150\) 25.5409 2.08541
\(151\) 0.678890 0.0552473 0.0276237 0.999618i \(-0.491206\pi\)
0.0276237 + 0.999618i \(0.491206\pi\)
\(152\) 7.22360 0.585911
\(153\) −1.61861 −0.130857
\(154\) 28.2633 2.27752
\(155\) −6.55589 −0.526582
\(156\) 2.61748 0.209566
\(157\) 6.23584 0.497674 0.248837 0.968545i \(-0.419952\pi\)
0.248837 + 0.968545i \(0.419952\pi\)
\(158\) −0.632370 −0.0503086
\(159\) 2.03823 0.161642
\(160\) 29.7315 2.35048
\(161\) 5.63793 0.444331
\(162\) 2.19659 0.172580
\(163\) 15.3163 1.19967 0.599834 0.800124i \(-0.295233\pi\)
0.599834 + 0.800124i \(0.295233\pi\)
\(164\) 18.9725 1.48150
\(165\) −14.3851 −1.11988
\(166\) −14.2285 −1.10435
\(167\) −15.7861 −1.22156 −0.610781 0.791799i \(-0.709145\pi\)
−0.610781 + 0.791799i \(0.709145\pi\)
\(168\) 6.60971 0.509950
\(169\) −12.1415 −0.933963
\(170\) 14.4979 1.11194
\(171\) 3.98608 0.304823
\(172\) −12.5130 −0.954106
\(173\) −3.44502 −0.261920 −0.130960 0.991388i \(-0.541806\pi\)
−0.130960 + 0.991388i \(0.541806\pi\)
\(174\) 0 0
\(175\) 42.4094 3.20585
\(176\) −5.88905 −0.443904
\(177\) 7.29049 0.547987
\(178\) −36.2642 −2.71812
\(179\) −12.0378 −0.899744 −0.449872 0.893093i \(-0.648530\pi\)
−0.449872 + 0.893093i \(0.648530\pi\)
\(180\) −11.5195 −0.858613
\(181\) 2.41926 0.179823 0.0899113 0.995950i \(-0.471342\pi\)
0.0899113 + 0.995950i \(0.471342\pi\)
\(182\) 7.42315 0.550241
\(183\) 6.00554 0.443942
\(184\) 2.80125 0.206511
\(185\) −21.6282 −1.59014
\(186\) 3.53156 0.258947
\(187\) −5.71008 −0.417563
\(188\) −9.42952 −0.687719
\(189\) 3.64733 0.265304
\(190\) −35.7034 −2.59019
\(191\) −5.83662 −0.422323 −0.211162 0.977451i \(-0.567725\pi\)
−0.211162 + 0.977451i \(0.567725\pi\)
\(192\) −12.6773 −0.914902
\(193\) −19.9903 −1.43894 −0.719468 0.694525i \(-0.755614\pi\)
−0.719468 + 0.694525i \(0.755614\pi\)
\(194\) −22.0805 −1.58529
\(195\) −3.77814 −0.270558
\(196\) 17.8061 1.27186
\(197\) −11.7126 −0.834486 −0.417243 0.908795i \(-0.637004\pi\)
−0.417243 + 0.908795i \(0.637004\pi\)
\(198\) 7.74905 0.550701
\(199\) −16.6484 −1.18017 −0.590086 0.807340i \(-0.700906\pi\)
−0.590086 + 0.807340i \(0.700906\pi\)
\(200\) 21.0715 1.48998
\(201\) 9.48235 0.668833
\(202\) −18.0982 −1.27338
\(203\) 0 0
\(204\) −4.57260 −0.320146
\(205\) −27.3853 −1.91267
\(206\) 16.7535 1.16727
\(207\) 1.54577 0.107438
\(208\) −1.54671 −0.107245
\(209\) 14.0620 0.972686
\(210\) −32.6692 −2.25439
\(211\) 24.2435 1.66899 0.834496 0.551014i \(-0.185759\pi\)
0.834496 + 0.551014i \(0.185759\pi\)
\(212\) 5.75801 0.395462
\(213\) 8.44759 0.578820
\(214\) −36.8097 −2.51626
\(215\) 18.0615 1.23179
\(216\) 1.81221 0.123305
\(217\) 5.86399 0.398073
\(218\) −27.9222 −1.89113
\(219\) −7.56757 −0.511369
\(220\) −40.6381 −2.73982
\(221\) −1.49971 −0.100881
\(222\) 11.6508 0.781951
\(223\) 28.3179 1.89631 0.948153 0.317814i \(-0.102949\pi\)
0.948153 + 0.317814i \(0.102949\pi\)
\(224\) −26.5937 −1.77687
\(225\) 11.6275 0.775168
\(226\) 18.5937 1.23684
\(227\) 9.86418 0.654709 0.327354 0.944902i \(-0.393843\pi\)
0.327354 + 0.944902i \(0.393843\pi\)
\(228\) 11.2607 0.745759
\(229\) −15.6570 −1.03464 −0.517322 0.855791i \(-0.673071\pi\)
−0.517322 + 0.855791i \(0.673071\pi\)
\(230\) −13.8455 −0.912943
\(231\) 12.8669 0.846581
\(232\) 0 0
\(233\) −19.7879 −1.29635 −0.648176 0.761491i \(-0.724468\pi\)
−0.648176 + 0.761491i \(0.724468\pi\)
\(234\) 2.03523 0.133047
\(235\) 13.6108 0.887871
\(236\) 20.5957 1.34067
\(237\) −0.287887 −0.0187003
\(238\) −12.9678 −0.840579
\(239\) −9.33298 −0.603700 −0.301850 0.953355i \(-0.597604\pi\)
−0.301850 + 0.953355i \(0.597604\pi\)
\(240\) 6.80706 0.439394
\(241\) −24.5737 −1.58293 −0.791464 0.611215i \(-0.790681\pi\)
−0.791464 + 0.611215i \(0.790681\pi\)
\(242\) 3.17432 0.204053
\(243\) 1.00000 0.0641500
\(244\) 16.9657 1.08612
\(245\) −25.7017 −1.64202
\(246\) 14.7521 0.940558
\(247\) 3.69327 0.234997
\(248\) 2.91357 0.185012
\(249\) −6.47754 −0.410498
\(250\) −59.3627 −3.75443
\(251\) −4.66182 −0.294252 −0.147126 0.989118i \(-0.547002\pi\)
−0.147126 + 0.989118i \(0.547002\pi\)
\(252\) 10.3037 0.649074
\(253\) 5.45311 0.342834
\(254\) 39.1107 2.45402
\(255\) 6.60020 0.413320
\(256\) −3.78146 −0.236341
\(257\) −28.3543 −1.76869 −0.884345 0.466834i \(-0.845395\pi\)
−0.884345 + 0.466834i \(0.845395\pi\)
\(258\) −9.72949 −0.605732
\(259\) 19.3456 1.20208
\(260\) −10.6733 −0.661928
\(261\) 0 0
\(262\) −24.8871 −1.53753
\(263\) 26.7811 1.65139 0.825697 0.564114i \(-0.190782\pi\)
0.825697 + 0.564114i \(0.190782\pi\)
\(264\) 6.39303 0.393464
\(265\) −8.31125 −0.510556
\(266\) 31.9353 1.95808
\(267\) −16.5093 −1.01035
\(268\) 26.7877 1.63632
\(269\) 0.785551 0.0478959 0.0239479 0.999713i \(-0.492376\pi\)
0.0239479 + 0.999713i \(0.492376\pi\)
\(270\) −8.95700 −0.545106
\(271\) 12.1514 0.738148 0.369074 0.929400i \(-0.379675\pi\)
0.369074 + 0.929400i \(0.379675\pi\)
\(272\) 2.70202 0.163834
\(273\) 3.37940 0.204530
\(274\) −18.2591 −1.10307
\(275\) 41.0191 2.47355
\(276\) 4.36681 0.262851
\(277\) −15.7837 −0.948352 −0.474176 0.880430i \(-0.657254\pi\)
−0.474176 + 0.880430i \(0.657254\pi\)
\(278\) −6.83744 −0.410083
\(279\) 1.60775 0.0962533
\(280\) −26.9523 −1.61071
\(281\) 20.0723 1.19741 0.598705 0.800969i \(-0.295682\pi\)
0.598705 + 0.800969i \(0.295682\pi\)
\(282\) −7.33194 −0.436611
\(283\) −1.95557 −0.116246 −0.0581232 0.998309i \(-0.518512\pi\)
−0.0581232 + 0.998309i \(0.518512\pi\)
\(284\) 23.8645 1.41610
\(285\) −16.2540 −0.962803
\(286\) 7.17980 0.424551
\(287\) 24.4951 1.44590
\(288\) −7.29128 −0.429643
\(289\) −14.3801 −0.845888
\(290\) 0 0
\(291\) −10.0522 −0.589269
\(292\) −21.3785 −1.25108
\(293\) 2.41420 0.141039 0.0705194 0.997510i \(-0.477534\pi\)
0.0705194 + 0.997510i \(0.477534\pi\)
\(294\) 13.8451 0.807465
\(295\) −29.7283 −1.73085
\(296\) 9.61201 0.558687
\(297\) 3.52776 0.204702
\(298\) 33.2912 1.92851
\(299\) 1.43222 0.0828273
\(300\) 32.8478 1.89647
\(301\) −16.1553 −0.931178
\(302\) 1.49124 0.0858114
\(303\) −8.23922 −0.473331
\(304\) −6.65415 −0.381641
\(305\) −24.4887 −1.40222
\(306\) −3.55543 −0.203250
\(307\) 1.11367 0.0635606 0.0317803 0.999495i \(-0.489882\pi\)
0.0317803 + 0.999495i \(0.489882\pi\)
\(308\) 36.3491 2.07118
\(309\) 7.62704 0.433887
\(310\) −14.4006 −0.817899
\(311\) −4.42989 −0.251196 −0.125598 0.992081i \(-0.540085\pi\)
−0.125598 + 0.992081i \(0.540085\pi\)
\(312\) 1.67908 0.0950592
\(313\) −30.1002 −1.70136 −0.850682 0.525680i \(-0.823811\pi\)
−0.850682 + 0.525680i \(0.823811\pi\)
\(314\) 13.6976 0.772999
\(315\) −14.8727 −0.837980
\(316\) −0.813283 −0.0457507
\(317\) 6.21069 0.348827 0.174414 0.984672i \(-0.444197\pi\)
0.174414 + 0.984672i \(0.444197\pi\)
\(318\) 4.47715 0.251066
\(319\) 0 0
\(320\) 51.6939 2.88978
\(321\) −16.7576 −0.935321
\(322\) 12.3842 0.690146
\(323\) −6.45193 −0.358995
\(324\) 2.82501 0.156945
\(325\) 10.7734 0.597599
\(326\) 33.6437 1.86335
\(327\) −12.7116 −0.702953
\(328\) 12.1706 0.672008
\(329\) −12.1743 −0.671192
\(330\) −31.5982 −1.73942
\(331\) −10.0058 −0.549967 −0.274984 0.961449i \(-0.588672\pi\)
−0.274984 + 0.961449i \(0.588672\pi\)
\(332\) −18.2991 −1.00429
\(333\) 5.30404 0.290660
\(334\) −34.6755 −1.89736
\(335\) −38.6660 −2.11255
\(336\) −6.08865 −0.332163
\(337\) 27.2955 1.48688 0.743440 0.668803i \(-0.233193\pi\)
0.743440 + 0.668803i \(0.233193\pi\)
\(338\) −26.6700 −1.45065
\(339\) 8.46482 0.459746
\(340\) 18.6456 1.01120
\(341\) 5.67175 0.307143
\(342\) 8.75579 0.473459
\(343\) −2.54213 −0.137262
\(344\) −8.02691 −0.432782
\(345\) −6.30316 −0.339351
\(346\) −7.56729 −0.406820
\(347\) 1.19493 0.0641473 0.0320736 0.999486i \(-0.489789\pi\)
0.0320736 + 0.999486i \(0.489789\pi\)
\(348\) 0 0
\(349\) 7.25120 0.388148 0.194074 0.980987i \(-0.437830\pi\)
0.194074 + 0.980987i \(0.437830\pi\)
\(350\) 93.1561 4.97940
\(351\) 0.926540 0.0494550
\(352\) −25.7219 −1.37098
\(353\) −5.26353 −0.280150 −0.140075 0.990141i \(-0.544734\pi\)
−0.140075 + 0.990141i \(0.544734\pi\)
\(354\) 16.0142 0.851147
\(355\) −34.4466 −1.82824
\(356\) −46.6390 −2.47186
\(357\) −5.90362 −0.312453
\(358\) −26.4420 −1.39750
\(359\) 14.6286 0.772067 0.386034 0.922485i \(-0.373845\pi\)
0.386034 + 0.922485i \(0.373845\pi\)
\(360\) −7.38960 −0.389466
\(361\) −3.11114 −0.163744
\(362\) 5.31413 0.279305
\(363\) 1.44511 0.0758486
\(364\) 9.54682 0.500390
\(365\) 30.8582 1.61519
\(366\) 13.1917 0.689542
\(367\) −5.55318 −0.289874 −0.144937 0.989441i \(-0.546298\pi\)
−0.144937 + 0.989441i \(0.546298\pi\)
\(368\) −2.58042 −0.134514
\(369\) 6.71590 0.349616
\(370\) −47.5083 −2.46984
\(371\) 7.43409 0.385959
\(372\) 4.54190 0.235487
\(373\) 29.7459 1.54019 0.770093 0.637931i \(-0.220210\pi\)
0.770093 + 0.637931i \(0.220210\pi\)
\(374\) −12.5427 −0.648568
\(375\) −27.0250 −1.39556
\(376\) −6.04891 −0.311949
\(377\) 0 0
\(378\) 8.01169 0.412077
\(379\) 1.96231 0.100797 0.0503986 0.998729i \(-0.483951\pi\)
0.0503986 + 0.998729i \(0.483951\pi\)
\(380\) −45.9177 −2.35553
\(381\) 17.8052 0.912187
\(382\) −12.8207 −0.655962
\(383\) −11.8165 −0.603796 −0.301898 0.953340i \(-0.597620\pi\)
−0.301898 + 0.953340i \(0.597620\pi\)
\(384\) −13.2642 −0.676885
\(385\) −52.4672 −2.67398
\(386\) −43.9106 −2.23499
\(387\) −4.42936 −0.225157
\(388\) −28.3975 −1.44166
\(389\) −11.9013 −0.603422 −0.301711 0.953399i \(-0.597558\pi\)
−0.301711 + 0.953399i \(0.597558\pi\)
\(390\) −8.29902 −0.420237
\(391\) −2.50200 −0.126532
\(392\) 11.4224 0.576916
\(393\) −11.3299 −0.571517
\(394\) −25.7277 −1.29614
\(395\) 1.17391 0.0590660
\(396\) 9.96596 0.500808
\(397\) 19.6778 0.987603 0.493801 0.869575i \(-0.335607\pi\)
0.493801 + 0.869575i \(0.335607\pi\)
\(398\) −36.5697 −1.83307
\(399\) 14.5386 0.727838
\(400\) −19.4103 −0.970517
\(401\) −20.5264 −1.02504 −0.512520 0.858675i \(-0.671288\pi\)
−0.512520 + 0.858675i \(0.671288\pi\)
\(402\) 20.8288 1.03885
\(403\) 1.48964 0.0742044
\(404\) −23.2759 −1.15802
\(405\) −4.07769 −0.202622
\(406\) 0 0
\(407\) 18.7114 0.927490
\(408\) −2.93326 −0.145218
\(409\) −32.1820 −1.59130 −0.795648 0.605760i \(-0.792869\pi\)
−0.795648 + 0.605760i \(0.792869\pi\)
\(410\) −60.1543 −2.97081
\(411\) −8.31246 −0.410023
\(412\) 21.5464 1.06152
\(413\) 26.5908 1.30845
\(414\) 3.39542 0.166876
\(415\) 26.4134 1.29658
\(416\) −6.75566 −0.331223
\(417\) −3.11275 −0.152432
\(418\) 30.8884 1.51080
\(419\) 1.58695 0.0775275 0.0387638 0.999248i \(-0.487658\pi\)
0.0387638 + 0.999248i \(0.487658\pi\)
\(420\) −42.0154 −2.05014
\(421\) −5.86317 −0.285753 −0.142877 0.989741i \(-0.545635\pi\)
−0.142877 + 0.989741i \(0.545635\pi\)
\(422\) 53.2530 2.59232
\(423\) −3.33787 −0.162293
\(424\) 3.69369 0.179381
\(425\) −18.8205 −0.912926
\(426\) 18.5559 0.899036
\(427\) 21.9042 1.06002
\(428\) −47.3405 −2.28829
\(429\) 3.26861 0.157810
\(430\) 39.6738 1.91324
\(431\) −8.46235 −0.407617 −0.203809 0.979011i \(-0.565332\pi\)
−0.203809 + 0.979011i \(0.565332\pi\)
\(432\) −1.66934 −0.0803164
\(433\) −12.7185 −0.611212 −0.305606 0.952158i \(-0.598859\pi\)
−0.305606 + 0.952158i \(0.598859\pi\)
\(434\) 12.8808 0.618297
\(435\) 0 0
\(436\) −35.9104 −1.71980
\(437\) 6.16157 0.294748
\(438\) −16.6229 −0.794271
\(439\) −7.50539 −0.358213 −0.179106 0.983830i \(-0.557321\pi\)
−0.179106 + 0.983830i \(0.557321\pi\)
\(440\) −26.0688 −1.24278
\(441\) 6.30302 0.300144
\(442\) −3.29425 −0.156691
\(443\) 11.6583 0.553902 0.276951 0.960884i \(-0.410676\pi\)
0.276951 + 0.960884i \(0.410676\pi\)
\(444\) 14.9840 0.711107
\(445\) 67.3199 3.19127
\(446\) 62.2028 2.94539
\(447\) 15.1558 0.716847
\(448\) −46.2381 −2.18455
\(449\) 19.4512 0.917957 0.458978 0.888447i \(-0.348216\pi\)
0.458978 + 0.888447i \(0.348216\pi\)
\(450\) 25.5409 1.20401
\(451\) 23.6921 1.11562
\(452\) 23.9132 1.12478
\(453\) 0.678890 0.0318971
\(454\) 21.6676 1.01691
\(455\) −13.7801 −0.646022
\(456\) 7.22360 0.338276
\(457\) 17.1125 0.800489 0.400245 0.916408i \(-0.368925\pi\)
0.400245 + 0.916408i \(0.368925\pi\)
\(458\) −34.3920 −1.60703
\(459\) −1.61861 −0.0755504
\(460\) −17.8065 −0.830232
\(461\) −8.53020 −0.397291 −0.198646 0.980071i \(-0.563654\pi\)
−0.198646 + 0.980071i \(0.563654\pi\)
\(462\) 28.2633 1.31493
\(463\) 1.49772 0.0696050 0.0348025 0.999394i \(-0.488920\pi\)
0.0348025 + 0.999394i \(0.488920\pi\)
\(464\) 0 0
\(465\) −6.55589 −0.304022
\(466\) −43.4660 −2.01352
\(467\) 21.4307 0.991695 0.495848 0.868410i \(-0.334857\pi\)
0.495848 + 0.868410i \(0.334857\pi\)
\(468\) 2.61748 0.120993
\(469\) 34.5853 1.59700
\(470\) 29.8974 1.37906
\(471\) 6.23584 0.287332
\(472\) 13.2119 0.608126
\(473\) −15.6257 −0.718472
\(474\) −0.632370 −0.0290457
\(475\) 46.3483 2.12660
\(476\) −16.6778 −0.764424
\(477\) 2.03823 0.0933241
\(478\) −20.5007 −0.937682
\(479\) 28.5538 1.30465 0.652327 0.757937i \(-0.273793\pi\)
0.652327 + 0.757937i \(0.273793\pi\)
\(480\) 29.7315 1.35705
\(481\) 4.91441 0.224078
\(482\) −53.9783 −2.45864
\(483\) 5.63793 0.256535
\(484\) 4.08245 0.185566
\(485\) 40.9896 1.86124
\(486\) 2.19659 0.0996394
\(487\) 25.1555 1.13991 0.569953 0.821677i \(-0.306961\pi\)
0.569953 + 0.821677i \(0.306961\pi\)
\(488\) 10.8833 0.492662
\(489\) 15.3163 0.692629
\(490\) −56.4561 −2.55043
\(491\) 21.6846 0.978614 0.489307 0.872112i \(-0.337250\pi\)
0.489307 + 0.872112i \(0.337250\pi\)
\(492\) 18.9725 0.855345
\(493\) 0 0
\(494\) 8.11259 0.365003
\(495\) −14.3851 −0.646563
\(496\) −2.68388 −0.120510
\(497\) 30.8112 1.38207
\(498\) −14.2285 −0.637595
\(499\) 5.68927 0.254687 0.127343 0.991859i \(-0.459355\pi\)
0.127343 + 0.991859i \(0.459355\pi\)
\(500\) −76.3457 −3.41428
\(501\) −15.7861 −0.705269
\(502\) −10.2401 −0.457039
\(503\) 9.46973 0.422234 0.211117 0.977461i \(-0.432290\pi\)
0.211117 + 0.977461i \(0.432290\pi\)
\(504\) 6.60971 0.294420
\(505\) 33.5970 1.49505
\(506\) 11.9782 0.532498
\(507\) −12.1415 −0.539224
\(508\) 50.2998 2.23169
\(509\) −30.5939 −1.35605 −0.678024 0.735039i \(-0.737164\pi\)
−0.678024 + 0.735039i \(0.737164\pi\)
\(510\) 14.4979 0.641979
\(511\) −27.6014 −1.22102
\(512\) 18.2220 0.805308
\(513\) 3.98608 0.175990
\(514\) −62.2827 −2.74717
\(515\) −31.1007 −1.37046
\(516\) −12.5130 −0.550853
\(517\) −11.7752 −0.517874
\(518\) 42.4943 1.86709
\(519\) −3.44502 −0.151220
\(520\) −6.84676 −0.300250
\(521\) 8.99098 0.393902 0.196951 0.980413i \(-0.436896\pi\)
0.196951 + 0.980413i \(0.436896\pi\)
\(522\) 0 0
\(523\) −1.43930 −0.0629362 −0.0314681 0.999505i \(-0.510018\pi\)
−0.0314681 + 0.999505i \(0.510018\pi\)
\(524\) −32.0070 −1.39823
\(525\) 42.4094 1.85090
\(526\) 58.8271 2.56498
\(527\) −2.60232 −0.113359
\(528\) −5.88905 −0.256288
\(529\) −20.6106 −0.896113
\(530\) −18.2564 −0.793008
\(531\) 7.29049 0.316380
\(532\) 41.0715 1.78068
\(533\) 6.22255 0.269528
\(534\) −36.2642 −1.56931
\(535\) 68.3324 2.95427
\(536\) 17.1840 0.742234
\(537\) −12.0378 −0.519468
\(538\) 1.72553 0.0743930
\(539\) 22.2355 0.957753
\(540\) −11.5195 −0.495720
\(541\) 27.0344 1.16230 0.581150 0.813796i \(-0.302603\pi\)
0.581150 + 0.813796i \(0.302603\pi\)
\(542\) 26.6917 1.14651
\(543\) 2.41926 0.103821
\(544\) 11.8018 0.505996
\(545\) 51.8339 2.22032
\(546\) 7.42315 0.317682
\(547\) −37.2739 −1.59372 −0.796858 0.604166i \(-0.793506\pi\)
−0.796858 + 0.604166i \(0.793506\pi\)
\(548\) −23.4828 −1.00313
\(549\) 6.00554 0.256310
\(550\) 90.1022 3.84197
\(551\) 0 0
\(552\) 2.80125 0.119229
\(553\) −1.05002 −0.0446513
\(554\) −34.6704 −1.47300
\(555\) −21.6282 −0.918067
\(556\) −8.79356 −0.372930
\(557\) 31.7679 1.34605 0.673026 0.739619i \(-0.264994\pi\)
0.673026 + 0.739619i \(0.264994\pi\)
\(558\) 3.53156 0.149503
\(559\) −4.10398 −0.173580
\(560\) 24.8276 1.04916
\(561\) −5.71008 −0.241080
\(562\) 44.0905 1.85985
\(563\) −13.4735 −0.567842 −0.283921 0.958848i \(-0.591635\pi\)
−0.283921 + 0.958848i \(0.591635\pi\)
\(564\) −9.42952 −0.397054
\(565\) −34.5169 −1.45214
\(566\) −4.29558 −0.180557
\(567\) 3.64733 0.153173
\(568\) 15.3088 0.642342
\(569\) 5.53839 0.232181 0.116091 0.993239i \(-0.462964\pi\)
0.116091 + 0.993239i \(0.462964\pi\)
\(570\) −35.7034 −1.49545
\(571\) 41.3036 1.72850 0.864250 0.503062i \(-0.167793\pi\)
0.864250 + 0.503062i \(0.167793\pi\)
\(572\) 9.23386 0.386087
\(573\) −5.83662 −0.243828
\(574\) 53.8057 2.24581
\(575\) 17.9735 0.749546
\(576\) −12.6773 −0.528219
\(577\) 39.7871 1.65636 0.828180 0.560463i \(-0.189377\pi\)
0.828180 + 0.560463i \(0.189377\pi\)
\(578\) −31.5872 −1.31385
\(579\) −19.9903 −0.830770
\(580\) 0 0
\(581\) −23.6257 −0.980161
\(582\) −22.0805 −0.915267
\(583\) 7.19039 0.297795
\(584\) −13.7140 −0.567489
\(585\) −3.77814 −0.156207
\(586\) 5.30300 0.219065
\(587\) 38.7105 1.59775 0.798877 0.601495i \(-0.205428\pi\)
0.798877 + 0.601495i \(0.205428\pi\)
\(588\) 17.8061 0.734310
\(589\) 6.40861 0.264062
\(590\) −65.3010 −2.68840
\(591\) −11.7126 −0.481791
\(592\) −8.85427 −0.363908
\(593\) −1.40712 −0.0577833 −0.0288916 0.999583i \(-0.509198\pi\)
−0.0288916 + 0.999583i \(0.509198\pi\)
\(594\) 7.74905 0.317947
\(595\) 24.0731 0.986901
\(596\) 42.8154 1.75379
\(597\) −16.6484 −0.681373
\(598\) 3.14599 0.128649
\(599\) −30.7455 −1.25623 −0.628113 0.778122i \(-0.716173\pi\)
−0.628113 + 0.778122i \(0.716173\pi\)
\(600\) 21.0715 0.860239
\(601\) 13.2534 0.540616 0.270308 0.962774i \(-0.412875\pi\)
0.270308 + 0.962774i \(0.412875\pi\)
\(602\) −35.4867 −1.44633
\(603\) 9.48235 0.386151
\(604\) 1.91787 0.0780371
\(605\) −5.89271 −0.239573
\(606\) −18.0982 −0.735189
\(607\) −9.85282 −0.399914 −0.199957 0.979805i \(-0.564080\pi\)
−0.199957 + 0.979805i \(0.564080\pi\)
\(608\) −29.0636 −1.17869
\(609\) 0 0
\(610\) −53.7916 −2.17796
\(611\) −3.09267 −0.125116
\(612\) −4.57260 −0.184836
\(613\) −23.0646 −0.931571 −0.465785 0.884898i \(-0.654228\pi\)
−0.465785 + 0.884898i \(0.654228\pi\)
\(614\) 2.44628 0.0987238
\(615\) −27.3853 −1.10428
\(616\) 23.3175 0.939488
\(617\) 2.14430 0.0863262 0.0431631 0.999068i \(-0.486256\pi\)
0.0431631 + 0.999068i \(0.486256\pi\)
\(618\) 16.7535 0.673924
\(619\) −29.7463 −1.19560 −0.597802 0.801644i \(-0.703959\pi\)
−0.597802 + 0.801644i \(0.703959\pi\)
\(620\) −18.5204 −0.743799
\(621\) 1.54577 0.0620296
\(622\) −9.73065 −0.390163
\(623\) −60.2150 −2.41246
\(624\) −1.54671 −0.0619181
\(625\) 52.0617 2.08247
\(626\) −66.1178 −2.64260
\(627\) 14.0620 0.561580
\(628\) 17.6163 0.702966
\(629\) −8.58519 −0.342314
\(630\) −32.6692 −1.30157
\(631\) −4.52395 −0.180096 −0.0900478 0.995937i \(-0.528702\pi\)
−0.0900478 + 0.995937i \(0.528702\pi\)
\(632\) −0.521710 −0.0207525
\(633\) 24.2435 0.963593
\(634\) 13.6423 0.541807
\(635\) −72.6039 −2.88120
\(636\) 5.75801 0.228320
\(637\) 5.84000 0.231389
\(638\) 0 0
\(639\) 8.44759 0.334182
\(640\) 54.0872 2.13798
\(641\) 30.7540 1.21471 0.607354 0.794431i \(-0.292231\pi\)
0.607354 + 0.794431i \(0.292231\pi\)
\(642\) −36.8097 −1.45276
\(643\) 16.8712 0.665337 0.332668 0.943044i \(-0.392051\pi\)
0.332668 + 0.943044i \(0.392051\pi\)
\(644\) 15.9272 0.627620
\(645\) 18.0615 0.711172
\(646\) −14.1722 −0.557599
\(647\) 14.1310 0.555548 0.277774 0.960646i \(-0.410403\pi\)
0.277774 + 0.960646i \(0.410403\pi\)
\(648\) 1.81221 0.0711901
\(649\) 25.7191 1.00956
\(650\) 23.6647 0.928205
\(651\) 5.86399 0.229828
\(652\) 43.2688 1.69454
\(653\) 38.7238 1.51538 0.757689 0.652615i \(-0.226328\pi\)
0.757689 + 0.652615i \(0.226328\pi\)
\(654\) −27.9222 −1.09184
\(655\) 46.1997 1.80517
\(656\) −11.2111 −0.437722
\(657\) −7.56757 −0.295239
\(658\) −26.7420 −1.04251
\(659\) −17.3822 −0.677116 −0.338558 0.940945i \(-0.609939\pi\)
−0.338558 + 0.940945i \(0.609939\pi\)
\(660\) −40.6381 −1.58183
\(661\) 0.959081 0.0373039 0.0186520 0.999826i \(-0.494063\pi\)
0.0186520 + 0.999826i \(0.494063\pi\)
\(662\) −21.9786 −0.854222
\(663\) −1.49971 −0.0582439
\(664\) −11.7386 −0.455547
\(665\) −59.2837 −2.29892
\(666\) 11.6508 0.451460
\(667\) 0 0
\(668\) −44.5958 −1.72546
\(669\) 28.3179 1.09483
\(670\) −84.9334 −3.28127
\(671\) 21.1861 0.817881
\(672\) −26.5937 −1.02587
\(673\) −30.1107 −1.16068 −0.580341 0.814374i \(-0.697081\pi\)
−0.580341 + 0.814374i \(0.697081\pi\)
\(674\) 59.9570 2.30946
\(675\) 11.6275 0.447544
\(676\) −34.2999 −1.31923
\(677\) −41.7661 −1.60520 −0.802602 0.596515i \(-0.796552\pi\)
−0.802602 + 0.596515i \(0.796552\pi\)
\(678\) 18.5937 0.714088
\(679\) −36.6636 −1.40702
\(680\) 11.9609 0.458680
\(681\) 9.86418 0.377996
\(682\) 12.4585 0.477061
\(683\) 40.2674 1.54079 0.770396 0.637566i \(-0.220059\pi\)
0.770396 + 0.637566i \(0.220059\pi\)
\(684\) 11.2607 0.430564
\(685\) 33.8956 1.29508
\(686\) −5.58402 −0.213199
\(687\) −15.6570 −0.597352
\(688\) 7.39413 0.281899
\(689\) 1.88850 0.0719461
\(690\) −13.8455 −0.527088
\(691\) 41.3791 1.57414 0.787069 0.616866i \(-0.211598\pi\)
0.787069 + 0.616866i \(0.211598\pi\)
\(692\) −9.73221 −0.369963
\(693\) 12.8669 0.488774
\(694\) 2.62477 0.0996351
\(695\) 12.6928 0.481467
\(696\) 0 0
\(697\) −10.8704 −0.411747
\(698\) 15.9279 0.602881
\(699\) −19.7879 −0.748449
\(700\) 119.807 4.52828
\(701\) 2.28878 0.0864459 0.0432230 0.999065i \(-0.486237\pi\)
0.0432230 + 0.999065i \(0.486237\pi\)
\(702\) 2.03523 0.0768148
\(703\) 21.1423 0.797399
\(704\) −44.7224 −1.68554
\(705\) 13.6108 0.512612
\(706\) −11.5618 −0.435135
\(707\) −30.0512 −1.13019
\(708\) 20.5957 0.774034
\(709\) −27.3080 −1.02557 −0.512786 0.858516i \(-0.671387\pi\)
−0.512786 + 0.858516i \(0.671387\pi\)
\(710\) −75.6651 −2.83966
\(711\) −0.287887 −0.0107966
\(712\) −29.9183 −1.12124
\(713\) 2.48521 0.0930717
\(714\) −12.9678 −0.485309
\(715\) −13.3284 −0.498453
\(716\) −34.0068 −1.27089
\(717\) −9.33298 −0.348547
\(718\) 32.1330 1.19919
\(719\) −19.0751 −0.711383 −0.355691 0.934604i \(-0.615755\pi\)
−0.355691 + 0.934604i \(0.615755\pi\)
\(720\) 6.80706 0.253684
\(721\) 27.8183 1.03601
\(722\) −6.83391 −0.254332
\(723\) −24.5737 −0.913904
\(724\) 6.83444 0.254000
\(725\) 0 0
\(726\) 3.17432 0.117810
\(727\) 29.2574 1.08510 0.542548 0.840024i \(-0.317459\pi\)
0.542548 + 0.840024i \(0.317459\pi\)
\(728\) 6.12416 0.226976
\(729\) 1.00000 0.0370370
\(730\) 67.7828 2.50875
\(731\) 7.16942 0.265171
\(732\) 16.9657 0.627070
\(733\) −20.9488 −0.773760 −0.386880 0.922130i \(-0.626447\pi\)
−0.386880 + 0.922130i \(0.626447\pi\)
\(734\) −12.1981 −0.450239
\(735\) −25.7017 −0.948022
\(736\) −11.2706 −0.415441
\(737\) 33.4515 1.23220
\(738\) 14.7521 0.543031
\(739\) 33.7623 1.24197 0.620983 0.783824i \(-0.286734\pi\)
0.620983 + 0.783824i \(0.286734\pi\)
\(740\) −61.0999 −2.24608
\(741\) 3.69327 0.135675
\(742\) 16.3297 0.599480
\(743\) 44.2943 1.62500 0.812500 0.582962i \(-0.198106\pi\)
0.812500 + 0.582962i \(0.198106\pi\)
\(744\) 2.91357 0.106817
\(745\) −61.8007 −2.26420
\(746\) 65.3396 2.39225
\(747\) −6.47754 −0.237001
\(748\) −16.1310 −0.589809
\(749\) −61.1207 −2.23330
\(750\) −59.3627 −2.16762
\(751\) 7.65239 0.279240 0.139620 0.990205i \(-0.455412\pi\)
0.139620 + 0.990205i \(0.455412\pi\)
\(752\) 5.57206 0.203192
\(753\) −4.66182 −0.169886
\(754\) 0 0
\(755\) −2.76830 −0.100749
\(756\) 10.3037 0.374743
\(757\) −16.2856 −0.591911 −0.295955 0.955202i \(-0.595638\pi\)
−0.295955 + 0.955202i \(0.595638\pi\)
\(758\) 4.31040 0.156561
\(759\) 5.45311 0.197935
\(760\) −29.4556 −1.06847
\(761\) −28.5492 −1.03491 −0.517453 0.855711i \(-0.673120\pi\)
−0.517453 + 0.855711i \(0.673120\pi\)
\(762\) 39.1107 1.41683
\(763\) −46.3634 −1.67847
\(764\) −16.4885 −0.596533
\(765\) 6.60020 0.238631
\(766\) −25.9560 −0.937830
\(767\) 6.75493 0.243907
\(768\) −3.78146 −0.136452
\(769\) −49.8716 −1.79842 −0.899208 0.437521i \(-0.855857\pi\)
−0.899208 + 0.437521i \(0.855857\pi\)
\(770\) −115.249 −4.15329
\(771\) −28.3543 −1.02115
\(772\) −56.4729 −2.03250
\(773\) −4.99992 −0.179835 −0.0899173 0.995949i \(-0.528660\pi\)
−0.0899173 + 0.995949i \(0.528660\pi\)
\(774\) −9.72949 −0.349719
\(775\) 18.6941 0.671513
\(776\) −18.2166 −0.653938
\(777\) 19.3456 0.694019
\(778\) −26.1424 −0.937249
\(779\) 26.7701 0.959139
\(780\) −10.6733 −0.382165
\(781\) 29.8011 1.06637
\(782\) −5.49588 −0.196532
\(783\) 0 0
\(784\) −10.5219 −0.375782
\(785\) −25.4278 −0.907556
\(786\) −24.8871 −0.887694
\(787\) 19.1052 0.681027 0.340513 0.940240i \(-0.389399\pi\)
0.340513 + 0.940240i \(0.389399\pi\)
\(788\) −33.0881 −1.17872
\(789\) 26.7811 0.953433
\(790\) 2.57860 0.0917426
\(791\) 30.8740 1.09775
\(792\) 6.39303 0.227166
\(793\) 5.56437 0.197597
\(794\) 43.2242 1.53397
\(795\) −8.31125 −0.294770
\(796\) −47.0318 −1.66700
\(797\) 23.2432 0.823318 0.411659 0.911338i \(-0.364950\pi\)
0.411659 + 0.911338i \(0.364950\pi\)
\(798\) 31.9353 1.13050
\(799\) 5.40273 0.191135
\(800\) −84.7795 −2.99741
\(801\) −16.5093 −0.583328
\(802\) −45.0881 −1.59212
\(803\) −26.6966 −0.942103
\(804\) 26.7877 0.944730
\(805\) −22.9897 −0.810281
\(806\) 3.27213 0.115256
\(807\) 0.785551 0.0276527
\(808\) −14.9312 −0.525276
\(809\) 7.53860 0.265043 0.132521 0.991180i \(-0.457693\pi\)
0.132521 + 0.991180i \(0.457693\pi\)
\(810\) −8.95700 −0.314717
\(811\) −48.2745 −1.69515 −0.847573 0.530679i \(-0.821937\pi\)
−0.847573 + 0.530679i \(0.821937\pi\)
\(812\) 0 0
\(813\) 12.1514 0.426170
\(814\) 41.1013 1.44060
\(815\) −62.4552 −2.18771
\(816\) 2.70202 0.0945897
\(817\) −17.6558 −0.617698
\(818\) −70.6906 −2.47164
\(819\) 3.37940 0.118086
\(820\) −77.3637 −2.70166
\(821\) 6.07390 0.211980 0.105990 0.994367i \(-0.466199\pi\)
0.105990 + 0.994367i \(0.466199\pi\)
\(822\) −18.2591 −0.636858
\(823\) −40.0147 −1.39483 −0.697413 0.716670i \(-0.745666\pi\)
−0.697413 + 0.716670i \(0.745666\pi\)
\(824\) 13.8218 0.481504
\(825\) 41.0191 1.42810
\(826\) 58.4092 2.03231
\(827\) 28.8632 1.00367 0.501837 0.864962i \(-0.332658\pi\)
0.501837 + 0.864962i \(0.332658\pi\)
\(828\) 4.36681 0.151757
\(829\) 41.9301 1.45629 0.728147 0.685421i \(-0.240382\pi\)
0.728147 + 0.685421i \(0.240382\pi\)
\(830\) 58.0194 2.01388
\(831\) −15.7837 −0.547531
\(832\) −11.7460 −0.407219
\(833\) −10.2021 −0.353483
\(834\) −6.83744 −0.236761
\(835\) 64.3706 2.22764
\(836\) 39.7251 1.37392
\(837\) 1.60775 0.0555719
\(838\) 3.48588 0.120418
\(839\) 30.7540 1.06175 0.530873 0.847451i \(-0.321864\pi\)
0.530873 + 0.847451i \(0.321864\pi\)
\(840\) −26.9523 −0.929943
\(841\) 0 0
\(842\) −12.8790 −0.443839
\(843\) 20.0723 0.691325
\(844\) 68.4881 2.35746
\(845\) 49.5093 1.70317
\(846\) −7.33194 −0.252077
\(847\) 5.27079 0.181107
\(848\) −3.40251 −0.116843
\(849\) −1.95557 −0.0671148
\(850\) −41.3408 −1.41798
\(851\) 8.19883 0.281052
\(852\) 23.8645 0.817585
\(853\) 14.3499 0.491330 0.245665 0.969355i \(-0.420994\pi\)
0.245665 + 0.969355i \(0.420994\pi\)
\(854\) 48.1145 1.64644
\(855\) −16.2540 −0.555875
\(856\) −30.3683 −1.03797
\(857\) 12.0892 0.412959 0.206479 0.978451i \(-0.433799\pi\)
0.206479 + 0.978451i \(0.433799\pi\)
\(858\) 7.17980 0.245114
\(859\) −22.5722 −0.770154 −0.385077 0.922885i \(-0.625825\pi\)
−0.385077 + 0.922885i \(0.625825\pi\)
\(860\) 51.0240 1.73990
\(861\) 24.4951 0.834790
\(862\) −18.5883 −0.633121
\(863\) −20.0243 −0.681637 −0.340818 0.940129i \(-0.610704\pi\)
−0.340818 + 0.940129i \(0.610704\pi\)
\(864\) −7.29128 −0.248054
\(865\) 14.0477 0.477636
\(866\) −27.9373 −0.949348
\(867\) −14.3801 −0.488374
\(868\) 16.5658 0.562280
\(869\) −1.01560 −0.0344518
\(870\) 0 0
\(871\) 8.78578 0.297695
\(872\) −23.0360 −0.780098
\(873\) −10.0522 −0.340215
\(874\) 13.5344 0.457809
\(875\) −98.5689 −3.33224
\(876\) −21.3785 −0.722311
\(877\) −42.0059 −1.41844 −0.709219 0.704988i \(-0.750952\pi\)
−0.709219 + 0.704988i \(0.750952\pi\)
\(878\) −16.4863 −0.556384
\(879\) 2.41420 0.0814288
\(880\) 24.0137 0.809502
\(881\) −56.1769 −1.89265 −0.946323 0.323221i \(-0.895234\pi\)
−0.946323 + 0.323221i \(0.895234\pi\)
\(882\) 13.8451 0.466190
\(883\) −54.5727 −1.83652 −0.918259 0.395980i \(-0.870405\pi\)
−0.918259 + 0.395980i \(0.870405\pi\)
\(884\) −4.23669 −0.142495
\(885\) −29.7283 −0.999307
\(886\) 25.6085 0.860334
\(887\) −39.2007 −1.31623 −0.658115 0.752917i \(-0.728646\pi\)
−0.658115 + 0.752917i \(0.728646\pi\)
\(888\) 9.61201 0.322558
\(889\) 64.9413 2.17806
\(890\) 147.874 4.95675
\(891\) 3.52776 0.118185
\(892\) 79.9983 2.67854
\(893\) −13.3050 −0.445236
\(894\) 33.2912 1.11342
\(895\) 49.0862 1.64077
\(896\) −48.3789 −1.61622
\(897\) 1.43222 0.0478203
\(898\) 42.7262 1.42579
\(899\) 0 0
\(900\) 32.8478 1.09493
\(901\) −3.29910 −0.109909
\(902\) 52.0418 1.73280
\(903\) −16.1553 −0.537616
\(904\) 15.3400 0.510200
\(905\) −9.86500 −0.327924
\(906\) 1.49124 0.0495433
\(907\) −3.36661 −0.111786 −0.0558932 0.998437i \(-0.517801\pi\)
−0.0558932 + 0.998437i \(0.517801\pi\)
\(908\) 27.8664 0.924779
\(909\) −8.23922 −0.273278
\(910\) −30.2693 −1.00342
\(911\) −54.9714 −1.82128 −0.910641 0.413198i \(-0.864412\pi\)
−0.910641 + 0.413198i \(0.864412\pi\)
\(912\) −6.65415 −0.220341
\(913\) −22.8512 −0.756265
\(914\) 37.5892 1.24334
\(915\) −24.4887 −0.809571
\(916\) −44.2312 −1.46144
\(917\) −41.3238 −1.36463
\(918\) −3.55543 −0.117347
\(919\) 26.6983 0.880696 0.440348 0.897827i \(-0.354855\pi\)
0.440348 + 0.897827i \(0.354855\pi\)
\(920\) −11.4226 −0.376593
\(921\) 1.11367 0.0366967
\(922\) −18.7374 −0.617082
\(923\) 7.82703 0.257630
\(924\) 36.3491 1.19580
\(925\) 61.6729 2.02779
\(926\) 3.28988 0.108112
\(927\) 7.62704 0.250505
\(928\) 0 0
\(929\) 34.4983 1.13185 0.565926 0.824456i \(-0.308519\pi\)
0.565926 + 0.824456i \(0.308519\pi\)
\(930\) −14.4006 −0.472214
\(931\) 25.1243 0.823417
\(932\) −55.9011 −1.83110
\(933\) −4.42989 −0.145028
\(934\) 47.0745 1.54032
\(935\) 23.2839 0.761466
\(936\) 1.67908 0.0548825
\(937\) −36.3860 −1.18868 −0.594340 0.804214i \(-0.702587\pi\)
−0.594340 + 0.804214i \(0.702587\pi\)
\(938\) 75.9696 2.48050
\(939\) −30.1002 −0.982284
\(940\) 38.4506 1.25412
\(941\) 10.4980 0.342226 0.171113 0.985251i \(-0.445264\pi\)
0.171113 + 0.985251i \(0.445264\pi\)
\(942\) 13.6976 0.446291
\(943\) 10.3812 0.338059
\(944\) −12.1703 −0.396111
\(945\) −14.8727 −0.483808
\(946\) −34.3233 −1.11595
\(947\) 8.01774 0.260542 0.130271 0.991478i \(-0.458415\pi\)
0.130271 + 0.991478i \(0.458415\pi\)
\(948\) −0.813283 −0.0264142
\(949\) −7.01166 −0.227608
\(950\) 101.808 3.30309
\(951\) 6.21069 0.201395
\(952\) −10.6986 −0.346742
\(953\) −23.8505 −0.772594 −0.386297 0.922374i \(-0.626246\pi\)
−0.386297 + 0.922374i \(0.626246\pi\)
\(954\) 4.47715 0.144953
\(955\) 23.7999 0.770147
\(956\) −26.3658 −0.852729
\(957\) 0 0
\(958\) 62.7209 2.02642
\(959\) −30.3183 −0.979029
\(960\) 51.6939 1.66841
\(961\) −28.4151 −0.916618
\(962\) 10.7949 0.348043
\(963\) −16.7576 −0.540008
\(964\) −69.4208 −2.23589
\(965\) 81.5143 2.62404
\(966\) 12.3842 0.398456
\(967\) 1.65641 0.0532667 0.0266333 0.999645i \(-0.491521\pi\)
0.0266333 + 0.999645i \(0.491521\pi\)
\(968\) 2.61884 0.0841726
\(969\) −6.45193 −0.207266
\(970\) 90.0374 2.89093
\(971\) 30.7444 0.986635 0.493317 0.869849i \(-0.335784\pi\)
0.493317 + 0.869849i \(0.335784\pi\)
\(972\) 2.82501 0.0906122
\(973\) −11.3532 −0.363968
\(974\) 55.2564 1.77053
\(975\) 10.7734 0.345024
\(976\) −10.0253 −0.320902
\(977\) −45.2764 −1.44852 −0.724260 0.689527i \(-0.757819\pi\)
−0.724260 + 0.689527i \(0.757819\pi\)
\(978\) 33.6437 1.07581
\(979\) −58.2410 −1.86139
\(980\) −72.6076 −2.31936
\(981\) −12.7116 −0.405850
\(982\) 47.6323 1.52001
\(983\) 54.0341 1.72342 0.861711 0.507400i \(-0.169393\pi\)
0.861711 + 0.507400i \(0.169393\pi\)
\(984\) 12.1706 0.387984
\(985\) 47.7602 1.52177
\(986\) 0 0
\(987\) −12.1743 −0.387513
\(988\) 10.4335 0.331934
\(989\) −6.84677 −0.217715
\(990\) −31.5982 −1.00426
\(991\) 2.45456 0.0779718 0.0389859 0.999240i \(-0.487587\pi\)
0.0389859 + 0.999240i \(0.487587\pi\)
\(992\) −11.7225 −0.372191
\(993\) −10.0058 −0.317524
\(994\) 67.6795 2.14666
\(995\) 67.8868 2.15216
\(996\) −18.2991 −0.579829
\(997\) 18.5499 0.587480 0.293740 0.955885i \(-0.405100\pi\)
0.293740 + 0.955885i \(0.405100\pi\)
\(998\) 12.4970 0.395586
\(999\) 5.30404 0.167812
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2523.2.a.q.1.8 9
3.2 odd 2 7569.2.a.bk.1.2 9
29.9 even 14 87.2.g.b.52.1 18
29.13 even 14 87.2.g.b.82.1 yes 18
29.28 even 2 2523.2.a.p.1.2 9
87.38 odd 14 261.2.k.b.226.3 18
87.71 odd 14 261.2.k.b.82.3 18
87.86 odd 2 7569.2.a.bl.1.8 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.b.52.1 18 29.9 even 14
87.2.g.b.82.1 yes 18 29.13 even 14
261.2.k.b.82.3 18 87.71 odd 14
261.2.k.b.226.3 18 87.38 odd 14
2523.2.a.p.1.2 9 29.28 even 2
2523.2.a.q.1.8 9 1.1 even 1 trivial
7569.2.a.bk.1.2 9 3.2 odd 2
7569.2.a.bl.1.8 9 87.86 odd 2