L(s) = 1 | + (−2.49 − 5.45i)3-s + (−3.83 − 1.12i)4-s + (6.35 + 7.33i)5-s + (−17.6 + 20.3i)9-s + (1.56 + 10.8i)11-s + (3.41 + 23.7i)12-s + (24.1 − 52.9i)15-s + (13.4 + 8.65i)16-s + (−16.1 − 35.3i)20-s + (12.2 − 19.4i)23-s + (−9.84 + 68.5i)25-s + (103. + 30.4i)27-s + (−5.55 + 12.1i)31-s + (55.5 − 35.6i)33-s + (90.8 − 58.3i)36-s + (−28.5 + 32.9i)37-s + ⋯ |
L(s) = 1 | + (−0.830 − 1.81i)3-s + (−0.959 − 0.281i)4-s + (1.27 + 1.46i)5-s + (−1.96 + 2.26i)9-s + (0.142 + 0.989i)11-s + (0.284 + 1.97i)12-s + (1.61 − 3.53i)15-s + (0.841 + 0.540i)16-s + (−0.806 − 1.76i)20-s + (0.534 − 0.845i)23-s + (−0.393 + 2.74i)25-s + (3.83 + 1.12i)27-s + (−0.179 + 0.392i)31-s + (1.68 − 1.08i)33-s + (2.52 − 1.62i)36-s + (−0.771 + 0.890i)37-s + ⋯ |
Λ(s)=(=(253s/2ΓC(s)L(s)(0.890−0.455i)Λ(3−s)
Λ(s)=(=(253s/2ΓC(s+1)L(s)(0.890−0.455i)Λ(1−s)
Degree: |
2 |
Conductor: |
253
= 11⋅23
|
Sign: |
0.890−0.455i
|
Analytic conductor: |
6.89375 |
Root analytic conductor: |
2.62559 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ253(54,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 253, ( :1), 0.890−0.455i)
|
Particular Values
L(23) |
≈ |
0.889330+0.214351i |
L(21) |
≈ |
0.889330+0.214351i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+(−1.56−10.8i)T |
| 23 | 1+(−12.2+19.4i)T |
good | 2 | 1+(3.83+1.12i)T2 |
| 3 | 1+(2.49+5.45i)T+(−5.89+6.80i)T2 |
| 5 | 1+(−6.35−7.33i)T+(−3.55+24.7i)T2 |
| 7 | 1+(−20.3−44.5i)T2 |
| 13 | 1+(−70.2+153.i)T2 |
| 17 | 1+(−243.+156.i)T2 |
| 19 | 1+(−303.−195.i)T2 |
| 29 | 1+(−707.+454.i)T2 |
| 31 | 1+(5.55−12.1i)T+(−629.−726.i)T2 |
| 37 | 1+(28.5−32.9i)T+(−194.−1.35e3i)T2 |
| 41 | 1+(239.−1.66e3i)T2 |
| 43 | 1+(1.21e3−1.39e3i)T2 |
| 47 | 1−27.4T+2.20e3T2 |
| 53 | 1+(−37.6−24.1i)T+(1.16e3+2.55e3i)T2 |
| 59 | 1+(74.5−47.9i)T+(1.44e3−3.16e3i)T2 |
| 61 | 1+(2.43e3+2.81e3i)T2 |
| 67 | 1+(−5.76+40.0i)T+(−4.30e3−1.26e3i)T2 |
| 71 | 1+(9.70−67.4i)T+(−4.83e3−1.42e3i)T2 |
| 73 | 1+(−4.48e3−2.88e3i)T2 |
| 79 | 1+(−2.59e3+5.67e3i)T2 |
| 83 | 1+(980.+6.81e3i)T2 |
| 89 | 1+(0.378+0.829i)T+(−5.18e3+5.98e3i)T2 |
| 97 | 1+(−124.−143.i)T+(−1.33e3+9.31e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.09609182372278753980835649125, −10.83104113729997099749086627264, −10.26260674647533800796335668481, −8.974266715212764216582477185399, −7.55714318725869813465983475055, −6.75337229530578919642560152938, −6.04332305333306841792924048442, −5.09293235053050385985955112254, −2.63247617353325735809068674864, −1.46410750649385793680854809922,
0.58104167670097708620732072976, 3.56959985545802336590316908732, 4.62968317598652582468627007556, 5.38943834432353978658108001967, 5.92173158585242542588529248374, 8.579881530381908167951327841805, 9.059906387921310094858419963216, 9.681018079801420220752082694742, 10.50123393497857305232614441627, 11.68191991618183730473953099905