L(s) = 1 | + (−2.49 − 5.45i)3-s + (−3.83 − 1.12i)4-s + (6.35 + 7.33i)5-s + (−17.6 + 20.3i)9-s + (1.56 + 10.8i)11-s + (3.41 + 23.7i)12-s + (24.1 − 52.9i)15-s + (13.4 + 8.65i)16-s + (−16.1 − 35.3i)20-s + (12.2 − 19.4i)23-s + (−9.84 + 68.5i)25-s + (103. + 30.4i)27-s + (−5.55 + 12.1i)31-s + (55.5 − 35.6i)33-s + (90.8 − 58.3i)36-s + (−28.5 + 32.9i)37-s + ⋯ |
L(s) = 1 | + (−0.830 − 1.81i)3-s + (−0.959 − 0.281i)4-s + (1.27 + 1.46i)5-s + (−1.96 + 2.26i)9-s + (0.142 + 0.989i)11-s + (0.284 + 1.97i)12-s + (1.61 − 3.53i)15-s + (0.841 + 0.540i)16-s + (−0.806 − 1.76i)20-s + (0.534 − 0.845i)23-s + (−0.393 + 2.74i)25-s + (3.83 + 1.12i)27-s + (−0.179 + 0.392i)31-s + (1.68 − 1.08i)33-s + (2.52 − 1.62i)36-s + (−0.771 + 0.890i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.890 - 0.455i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.890 - 0.455i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.889330 + 0.214351i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.889330 + 0.214351i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 + (-1.56 - 10.8i)T \) |
| 23 | \( 1 + (-12.2 + 19.4i)T \) |
good | 2 | \( 1 + (3.83 + 1.12i)T^{2} \) |
| 3 | \( 1 + (2.49 + 5.45i)T + (-5.89 + 6.80i)T^{2} \) |
| 5 | \( 1 + (-6.35 - 7.33i)T + (-3.55 + 24.7i)T^{2} \) |
| 7 | \( 1 + (-20.3 - 44.5i)T^{2} \) |
| 13 | \( 1 + (-70.2 + 153. i)T^{2} \) |
| 17 | \( 1 + (-243. + 156. i)T^{2} \) |
| 19 | \( 1 + (-303. - 195. i)T^{2} \) |
| 29 | \( 1 + (-707. + 454. i)T^{2} \) |
| 31 | \( 1 + (5.55 - 12.1i)T + (-629. - 726. i)T^{2} \) |
| 37 | \( 1 + (28.5 - 32.9i)T + (-194. - 1.35e3i)T^{2} \) |
| 41 | \( 1 + (239. - 1.66e3i)T^{2} \) |
| 43 | \( 1 + (1.21e3 - 1.39e3i)T^{2} \) |
| 47 | \( 1 - 27.4T + 2.20e3T^{2} \) |
| 53 | \( 1 + (-37.6 - 24.1i)T + (1.16e3 + 2.55e3i)T^{2} \) |
| 59 | \( 1 + (74.5 - 47.9i)T + (1.44e3 - 3.16e3i)T^{2} \) |
| 61 | \( 1 + (2.43e3 + 2.81e3i)T^{2} \) |
| 67 | \( 1 + (-5.76 + 40.0i)T + (-4.30e3 - 1.26e3i)T^{2} \) |
| 71 | \( 1 + (9.70 - 67.4i)T + (-4.83e3 - 1.42e3i)T^{2} \) |
| 73 | \( 1 + (-4.48e3 - 2.88e3i)T^{2} \) |
| 79 | \( 1 + (-2.59e3 + 5.67e3i)T^{2} \) |
| 83 | \( 1 + (980. + 6.81e3i)T^{2} \) |
| 89 | \( 1 + (0.378 + 0.829i)T + (-5.18e3 + 5.98e3i)T^{2} \) |
| 97 | \( 1 + (-124. - 143. i)T + (-1.33e3 + 9.31e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.09609182372278753980835649125, −10.83104113729997099749086627264, −10.26260674647533800796335668481, −8.974266715212764216582477185399, −7.55714318725869813465983475055, −6.75337229530578919642560152938, −6.04332305333306841792924048442, −5.09293235053050385985955112254, −2.63247617353325735809068674864, −1.46410750649385793680854809922,
0.58104167670097708620732072976, 3.56959985545802336590316908732, 4.62968317598652582468627007556, 5.38943834432353978658108001967, 5.92173158585242542588529248374, 8.579881530381908167951327841805, 9.059906387921310094858419963216, 9.681018079801420220752082694742, 10.50123393497857305232614441627, 11.68191991618183730473953099905